chore(*): minimize dependencies on tests
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
fbf13994d8
commit
cbc81ea6c5
84 changed files with 84 additions and 107 deletions
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using bool eq_ops tactic
|
using bool eq_ops tactic
|
||||||
|
|
||||||
variables a b c : bool
|
variables a b c : bool
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace tst
|
namespace tst
|
||||||
definition foo {A B : Type} (a : A) (b : B) := a
|
definition foo {A B : Type} (a : A) (b : B) := a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num
|
using num
|
||||||
|
|
||||||
abbreviation Type1 := Type.{1}
|
abbreviation Type1 := Type.{1}
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import data.bool
|
||||||
using bool
|
using bool
|
||||||
|
|
||||||
check ff
|
check ff
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
theorem symm2 {A : Type} {a b : A} (H : a = b) : b = a
|
theorem symm2 {A : Type} {a b : A} (H : a = b) : b = a
|
||||||
:= subst H (refl a)
|
:= subst H (refl a)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
section
|
section
|
||||||
parameter {A : Type}
|
parameter {A : Type}
|
||||||
theorem T {a b : A} (H : a = b) : b = a
|
theorem T {a b : A} (H : a = b) : b = a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import data.num
|
||||||
using num
|
using num
|
||||||
|
|
||||||
namespace foo
|
namespace foo
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic data.prod
|
||||||
using num prod inhabited
|
using num prod inhabited
|
||||||
|
|
||||||
definition H : inhabited (Prop × num × (num → num)) := _
|
definition H : inhabited (Prop × num × (num → num)) := _
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic data.prod
|
||||||
using num prod nonempty inhabited
|
using num prod nonempty inhabited
|
||||||
|
|
||||||
theorem H {A B : Type} (H1 : inhabited A) : inhabited (Prop × A × (B → num))
|
theorem H {A B : Type} (H1 : inhabited A) : inhabited (Prop × A × (B → num))
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic data.prod
|
||||||
using num prod inhabited
|
using num prod inhabited
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
inductive nat : Type :=
|
inductive nat : Type :=
|
||||||
zero : nat,
|
zero : nat,
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace algebra
|
namespace algebra
|
||||||
inductive mul_struct (A : Type) : Type :=
|
inductive mul_struct (A : Type) : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic data.prod
|
||||||
using prod
|
using prod
|
||||||
|
|
||||||
inductive t1 : Type :=
|
inductive t1 : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num tactic
|
using num tactic
|
||||||
|
|
||||||
inductive inh (A : Type) : Type :=
|
inductive inh (A : Type) : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic data.prod
|
||||||
using num tactic prod
|
using num tactic prod
|
||||||
|
|
||||||
inductive inh (A : Type) : Prop :=
|
inductive inh (A : Type) : Prop :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace setoid
|
namespace setoid
|
||||||
inductive setoid : Type :=
|
inductive setoid : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace setoid
|
namespace setoid
|
||||||
inductive setoid : Type :=
|
inductive setoid : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace setoid
|
namespace setoid
|
||||||
inductive setoid : Type :=
|
inductive setoid : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace setoid
|
namespace setoid
|
||||||
inductive setoid : Type :=
|
inductive setoid : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard data.unit
|
import logic data.unit
|
||||||
using bool unit decidable
|
using bool unit decidable
|
||||||
|
|
||||||
variables a b c : bool
|
variables a b c : bool
|
||||||
|
|
|
@ -4,7 +4,7 @@
|
||||||
--- Author: Jeremy Avigad
|
--- Author: Jeremy Avigad
|
||||||
----------------------------------------------------------------------------------------------------
|
----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
import standard struc.function
|
import logic struc.function
|
||||||
|
|
||||||
using function
|
using function
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num
|
using num
|
||||||
variable p : num → num → num → Prop
|
variable p : num → num → num → Prop
|
||||||
axiom H1 : ∃ x y z, p x y z
|
axiom H1 : ∃ x y z, p x y z
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num tactic
|
using num tactic
|
||||||
variable p : num → num → num → Prop
|
variable p : num → num → num → Prop
|
||||||
axiom H1 : ∃ x y z, p x y z
|
axiom H1 : ∃ x y z, p x y z
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
namespace foo
|
namespace foo
|
||||||
variable x : num.num
|
variable x : num.num
|
||||||
check x
|
check x
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard struc.function
|
import logic struc.function
|
||||||
using function num bool
|
using function num bool
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem T {a b c d : Prop} (H : a) (H : b) (H : c) (H : d) : a
|
theorem T {a b c d : Prop} (H : a) (H : b) (H : c) (H : d) : a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num
|
using num
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num
|
using num
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
variables a b c d : Prop
|
variables a b c d : Prop
|
||||||
axiom Ha : a
|
axiom Ha : a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
definition id {A : Type} (a : A) := a
|
definition id {A : Type} (a : A) := a
|
||||||
check id id
|
check id id
|
||||||
set_option pp.universes true
|
set_option pp.universes true
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
definition f {A : Type} {B : Type} (f : A → B → Prop) ⦃C : Type⦄ {R : C → C → Prop} {c : C} (H : R c c) : R c c
|
definition f {A : Type} {B : Type} (f : A → B → Prop) ⦃C : Type⦄ {R : C → C → Prop} {c : C} (H : R c c) : R c c
|
||||||
:= H
|
:= H
|
||||||
|
@ -7,4 +7,3 @@ variable g : Prop → Prop → Prop
|
||||||
variable H : true ∧ true
|
variable H : true ∧ true
|
||||||
|
|
||||||
check f g H
|
check f g H
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
inductive list (A : Type) : Type :=
|
inductive list (A : Type) : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
check
|
check
|
||||||
let f x y := x ∧ y,
|
let f x y := x ∧ y,
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num eq_ops
|
using num eq_ops
|
||||||
|
|
||||||
inductive nat : Type :=
|
inductive nat : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num eq_ops
|
using num eq_ops
|
||||||
|
|
||||||
inductive nat : Type :=
|
inductive nat : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num eq_ops
|
using num eq_ops
|
||||||
|
|
||||||
inductive nat : Type :=
|
inductive nat : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num eq_ops
|
using num eq_ops
|
||||||
|
|
||||||
inductive nat : Type :=
|
inductive nat : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using eq_ops
|
using eq_ops
|
||||||
|
|
||||||
inductive nat : Type :=
|
inductive nat : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using bool
|
using bool
|
||||||
|
|
||||||
variable list : Type.{1}
|
variable list : Type.{1}
|
||||||
|
@ -19,4 +19,3 @@ check a :: b :: nil
|
||||||
check [a, b]
|
check [a, b]
|
||||||
check [a, b, c]
|
check [a, b, c]
|
||||||
check []
|
check []
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace foo
|
namespace foo
|
||||||
namespace boo
|
namespace boo
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
check 14
|
check 14
|
||||||
check 0
|
check 0
|
||||||
check 3
|
check 3
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic data.prod
|
||||||
using prod
|
using prod
|
||||||
|
|
||||||
-- Test tuple notation
|
-- Test tuple notation
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num
|
using num
|
||||||
|
|
||||||
variable foo : Prop
|
variable foo : Prop
|
||||||
|
@ -15,6 +15,3 @@ namespace N1
|
||||||
print raw _root_.foo
|
print raw _root_.foo
|
||||||
end N2
|
end N2
|
||||||
end N1
|
end N1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using bool
|
using bool
|
||||||
|
|
||||||
definition set {{T : Type}} := T → bool
|
definition set {{T : Type}} := T → bool
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using bool
|
using bool
|
||||||
|
|
||||||
namespace set
|
namespace set
|
||||||
|
|
|
@ -1,3 +1,3 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
print raw (by assumption)
|
print raw (by assumption)
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A
|
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
|
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
|
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b
|
theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b
|
||||||
|
@ -9,8 +9,3 @@ theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b
|
||||||
(assume Hna, absurd Ha Hna)
|
(assume Hna, absurd Ha Hna)
|
||||||
(assume Hnb, absurd Hb Hnb));
|
(assume Hnb, absurd Hb Hnb));
|
||||||
assumption
|
assumption
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b :=
|
theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
definition basic_tac : tactic
|
definition basic_tac : tactic
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
variable A : Type.{1}
|
variable A : Type.{1}
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard data.string
|
import logic data.string
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
variable A : Type.{1}
|
variable A : Type.{1}
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
variable A : Type.{1}
|
variable A : Type.{1}
|
||||||
|
@ -8,5 +8,3 @@ theorem tst {a b c : A} (H1 : a = b) (H2 : b = c) : f a b = f b c
|
||||||
:= by apply (@congr A A (f a) (f b));
|
:= by apply (@congr A A (f a) (f b));
|
||||||
apply (congr_arg f);
|
apply (congr_arg f);
|
||||||
!assumption
|
!assumption
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
variable A : Type.{1}
|
variable A : Type.{1}
|
||||||
|
@ -9,4 +9,3 @@ theorem tst {a b c : A} (H1 : a = b) (H2 : b = c) : f a b = f b c
|
||||||
apply (subst H2);
|
apply (subst H2);
|
||||||
apply refl;
|
apply refl;
|
||||||
assumption
|
assumption
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst {A : Type} {f : A → A → A} {a b c : A} (H1 : a = b) (H2 : b = c) : f a b = f b c
|
theorem tst {A : Type} {f : A → A → A} {a b c : A} (H1 : a = b) (H2 : b = c) : f a b = f b c
|
||||||
|
@ -6,4 +6,3 @@ theorem tst {A : Type} {f : A → A → A} {a b c : A} (H1 : a = b) (H2 : b = c)
|
||||||
apply (subst H2);
|
apply (subst H2);
|
||||||
apply refl;
|
apply refl;
|
||||||
assumption
|
assumption
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A
|
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A
|
||||||
|
|
|
@ -1,12 +1,7 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
definition assump := eassumption
|
definition assump := eassumption
|
||||||
|
|
||||||
theorem tst {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
|
theorem tst {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
|
||||||
:= by apply trans; assump; assump
|
:= by apply trans; assump; assump
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
definition assump := eassumption
|
definition assump := eassumption
|
||||||
|
@ -12,6 +12,3 @@ theorem tst2 {A : Type} {a b c d : A} {p : A → A → Prop} (Ha : p a c) (H1 :
|
||||||
(*
|
(*
|
||||||
print(get_env():find("tst2"):value())
|
print(get_env():find("tst2"):value())
|
||||||
*)
|
*)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem T (a b c d : Prop) (Ha : a) (Hb : b) (Hc : c) (Hd : d) : a ∧ b ∧ c ∧ d
|
theorem T (a b c d : Prop) (Ha : a) (Hb : b) (Hc : c) (Hd : d) : a ∧ b ∧ c ∧ d
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num (num pos_num num_rec pos_num_rec)
|
using num (num pos_num num_rec pos_num_rec)
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
definition my_tac1 := apply @refl
|
definition my_tac1 := apply @refl
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
definition my_tac1 := apply @refl
|
definition my_tac1 := apply @refl
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic inhabited
|
using tactic inhabited
|
||||||
|
|
||||||
inductive sum (A : Type) (B : Type) : Type :=
|
inductive sum (A : Type) (B : Type) : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
definition my_tac := repeat ([ apply @and_intro
|
definition my_tac := repeat ([ apply @and_intro
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic inhabited
|
using tactic inhabited
|
||||||
|
|
||||||
inductive sum (A : Type) (B : Type) : Type :=
|
inductive sum (A : Type) (B : Type) : Type :=
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A
|
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic (renaming id->id_tac)
|
using tactic (renaming id->id_tac)
|
||||||
|
|
||||||
definition id {A : Type} (a : A) := a
|
definition id {A : Type} (a : A) := a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic (renaming id->id_tac)
|
using tactic (renaming id->id_tac)
|
||||||
|
|
||||||
definition id {A : Type} (a : A) := a
|
definition id {A : Type} (a : A) := a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic (renaming id->id_tac)
|
using tactic (renaming id->id_tac)
|
||||||
|
|
||||||
definition id {A : Type} (a : A) := a
|
definition id {A : Type} (a : A) := a
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A ∧ B ∧ A
|
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A ∧ B ∧ A
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A ∧ B ∧ A
|
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A ∧ B ∧ A
|
||||||
|
|
|
@ -1,6 +1,5 @@
|
||||||
import standard
|
import logic
|
||||||
using tactic
|
using tactic
|
||||||
|
|
||||||
theorem tst {A B : Prop} (H1 : A) (H2 : B) : ((fun x : Prop, x) A) ∧ B ∧ A
|
theorem tst {A B : Prop} (H1 : A) (H2 : B) : ((fun x : Prop, x) A) ∧ B ∧ A
|
||||||
:= by apply and_intro; beta; assumption; apply and_intro; !assumption
|
:= by apply and_intro; beta; assumption; apply and_intro; !assumption
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using num
|
using num
|
||||||
|
|
||||||
definition proj1 (x : num) (y : num) := x
|
definition proj1 (x : num) (y : num) := x
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
inductive nat : Type :=
|
inductive nat : Type :=
|
||||||
zero : nat,
|
zero : nat,
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
variable N : Type
|
variable N : Type
|
||||||
variable α : N
|
variable α : N
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
namespace S1
|
namespace S1
|
||||||
hypothesis I : Type
|
hypothesis I : Type
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
hypothesis I : Type
|
hypothesis I : Type
|
||||||
definition F (X : Type) : Type := (X → Prop) → Prop
|
definition F (X : Type) : Type := (X → Prop) → Prop
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
import standard
|
import logic
|
||||||
using bool eq_ops tactic
|
using bool eq_ops tactic
|
||||||
|
|
||||||
variables a b c : bool
|
variables a b c : bool
|
||||||
|
|
|
@ -3,7 +3,7 @@
|
||||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
-- Author: Floris van Doorn
|
-- Author: Floris van Doorn
|
||||||
----------------------------------------------------------------------------------------------------
|
----------------------------------------------------------------------------------------------------
|
||||||
import standard struc.binary
|
import logic struc.binary
|
||||||
using tactic num binary eq_ops
|
using tactic num binary eq_ops
|
||||||
using decidable
|
using decidable
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue