feat(library/definitional/induction_on): automatically add 'induction_on'
This commit is contained in:
parent
a7a06ab0f8
commit
cdcde661ef
23 changed files with 281 additions and 255 deletions
|
@ -21,10 +21,6 @@ notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
|
|||
|
||||
variable {T : Type}
|
||||
|
||||
protected theorem induction_on {P : list T → Prop} (l : list T) (Hnil : P nil)
|
||||
(Hind : ∀ (x : T) (l : list T), P l → P (x::l)) : P l :=
|
||||
rec Hnil Hind l
|
||||
|
||||
protected theorem cases_on {P : list T → Prop} (l : list T) (Hnil : P nil)
|
||||
(Hcons : ∀ (x : T) (l : list T), P (x::l)) : P l :=
|
||||
induction_on l Hnil (take x l IH, Hcons x l)
|
||||
|
|
|
@ -30,10 +30,6 @@ theorem rec_zero {P : ℕ → Type} (x : P zero) (f : ∀m, P m → P (succ m))
|
|||
theorem rec_succ {P : ℕ → Type} (x : P zero) (f : ∀m, P m → P (succ m)) (n : ℕ) :
|
||||
nat.rec x f (succ n) = f n (nat.rec x f n)
|
||||
|
||||
protected theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P zero) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) :
|
||||
P a :=
|
||||
nat.rec H1 H2 a
|
||||
|
||||
protected definition is_inhabited [instance] : inhabited nat :=
|
||||
inhabited.mk zero
|
||||
|
||||
|
|
|
@ -18,10 +18,6 @@ definition pos_num.is_inhabited [instance] : inhabited pos_num :=
|
|||
inhabited.mk pos_num.one
|
||||
|
||||
namespace pos_num
|
||||
protected theorem induction_on {P : pos_num → Prop} (a : pos_num)
|
||||
(H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a :=
|
||||
rec H₁ H₂ H₃ a
|
||||
|
||||
definition succ (a : pos_num) : pos_num :=
|
||||
rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
|
||||
|
||||
|
@ -125,10 +121,6 @@ inhabited.mk num.zero
|
|||
|
||||
namespace num
|
||||
open pos_num
|
||||
protected theorem induction_on {P : num → Prop} (a : num)
|
||||
(H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a :=
|
||||
rec H₁ H₂ a
|
||||
|
||||
definition succ (a : num) : num :=
|
||||
rec_on a (pos one) (λp, pos (succ p))
|
||||
|
||||
|
|
|
@ -10,10 +10,6 @@ inductive option (A : Type) : Type :=
|
|||
some : A → option A
|
||||
|
||||
namespace option
|
||||
protected theorem induction_on {A : Type} {p : option A → Prop} (o : option A)
|
||||
(H1 : p none) (H2 : ∀a, p (some a)) : p o :=
|
||||
rec H1 H2 o
|
||||
|
||||
definition is_none {A : Type} (o : option A) : Prop :=
|
||||
rec true (λ a, false) o
|
||||
|
||||
|
|
|
@ -15,10 +15,6 @@ namespace vector
|
|||
section sc_vector
|
||||
variable {T : Type}
|
||||
|
||||
protected theorem induction_on {C : ∀ (n : ℕ), vector T n → Prop} {n : ℕ} (v : vector T n) (Hnil : C 0 nil)
|
||||
(Hcons : ∀(x : T) {n : ℕ} (w : vector T n), C n w → C (succ n) (cons x w)) : C n v :=
|
||||
rec_on v Hnil Hcons
|
||||
|
||||
protected theorem case_on {C : ∀ (n : ℕ), vector T n → Type} {n : ℕ} (v : vector T n) (Hnil : C 0 nil)
|
||||
(Hcons : ∀(x : T) {n : ℕ} (w : vector T n), C (succ n) (cons x w)) : C n v :=
|
||||
rec_on v Hnil (take x n v IH, Hcons x v)
|
||||
|
|
|
@ -89,7 +89,7 @@ namespace IsEquiv
|
|||
|
||||
-- Any function equal to an equivalence is an equivlance as well.
|
||||
definition path_closed (Hf : IsEquiv f) (Heq : f ≈ f') : (IsEquiv f') :=
|
||||
path.induction_on Heq Hf
|
||||
path.rec_on Heq Hf
|
||||
|
||||
-- Any function pointwise equal to an equivalence is an equivalence as well.
|
||||
definition homotopic (Hf : IsEquiv f) (Heq : f ∼ f') : (IsEquiv f') :=
|
||||
|
|
|
@ -23,10 +23,6 @@ notation a ≈ b := path a b
|
|||
notation x ≈ y `:>`:50 A:49 := @path A x y
|
||||
definition idp {A : Type} {a : A} := idpath a
|
||||
|
||||
protected definition induction_on {A : Type} {a b : A} (p : a ≈ b)
|
||||
{C : Π (b : A) (p : a ≈ b), Type} (H : C a (idpath a)) : C b p :=
|
||||
path.rec H p
|
||||
|
||||
-- Concatenation and inverse
|
||||
-- -------------------------
|
||||
|
||||
|
@ -50,141 +46,141 @@ notation p ⁻¹ := inverse p
|
|||
|
||||
-- The identity path is a right unit.
|
||||
definition concat_p1 {A : Type} {x y : A} (p : x ≈ y) : p ⬝ idp ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- The identity path is a right unit.
|
||||
definition concat_1p {A : Type} {x y : A} (p : x ≈ y) : idp ⬝ p ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Concatenation is associative.
|
||||
definition concat_p_pp {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
||||
p ⬝ (q ⬝ r) ≈ (p ⬝ q) ⬝ r :=
|
||||
induction_on r (induction_on q idp)
|
||||
rec_on r (rec_on q idp)
|
||||
|
||||
definition concat_pp_p {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
||||
(p ⬝ q) ⬝ r ≈ p ⬝ (q ⬝ r) :=
|
||||
induction_on r (induction_on q idp)
|
||||
rec_on r (rec_on q idp)
|
||||
|
||||
-- The left inverse law.
|
||||
definition concat_pV {A : Type} {x y : A} (p : x ≈ y) : p ⬝ p⁻¹ ≈ idp :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- The right inverse law.
|
||||
definition concat_Vp {A : Type} {x y : A} (p : x ≈ y) : p⁻¹ ⬝ p ≈ idp :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
|
||||
-- redundant, following from earlier theorems.
|
||||
|
||||
definition concat_V_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : p⁻¹ ⬝ (p ⬝ q) ≈ q :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition concat_p_Vp {A : Type} {x y z : A} (p : x ≈ y) (q : x ≈ z) : p ⬝ (p⁻¹ ⬝ q) ≈ q :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition concat_pp_V {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q) ⬝ q⁻¹ ≈ p :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition concat_pV_p {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p ⬝ q⁻¹) ⬝ q ≈ p :=
|
||||
induction_on q (take p, induction_on p idp) p
|
||||
rec_on q (take p, rec_on p idp) p
|
||||
|
||||
-- Inverse distributes over concatenation
|
||||
definition inv_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p⁻¹ :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition inv_Vp {A : Type} {x y z : A} (p : y ≈ x) (q : y ≈ z) : (p⁻¹ ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
-- universe metavariables
|
||||
definition inv_pV {A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y) : (p ⬝ q⁻¹)⁻¹ ≈ q ⬝ p⁻¹ :=
|
||||
induction_on p (take q, induction_on q idp) q
|
||||
rec_on p (take q, rec_on q idp) q
|
||||
|
||||
definition inv_VV {A : Type} {x y z : A} (p : y ≈ x) (q : z ≈ y) : (p⁻¹ ⬝ q⁻¹)⁻¹ ≈ q ⬝ p :=
|
||||
induction_on p (induction_on q idp)
|
||||
rec_on p (rec_on q idp)
|
||||
|
||||
-- Inverse is an involution.
|
||||
definition inv_V {A : Type} {x y : A} (p : x ≈ y) : p⁻¹⁻¹ ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Theorems for moving things around in equations
|
||||
-- ----------------------------------------------
|
||||
|
||||
definition moveR_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
p ≈ (r⁻¹ ⬝ q) → (r ⬝ p) ≈ q :=
|
||||
induction_on r (take p h, concat_1p _ ⬝ h ⬝ concat_1p _) p
|
||||
rec_on r (take p h, concat_1p _ ⬝ h ⬝ concat_1p _) p
|
||||
|
||||
definition moveR_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
r ≈ q ⬝ p⁻¹ → r ⬝ p ≈ q :=
|
||||
induction_on p (take q h, (concat_p1 _ ⬝ h ⬝ concat_p1 _)) q
|
||||
rec_on p (take q h, (concat_p1 _ ⬝ h ⬝ concat_p1 _)) q
|
||||
|
||||
definition moveR_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
||||
p ≈ r ⬝ q → r⁻¹ ⬝ p ≈ q :=
|
||||
induction_on r (take q h, concat_1p _ ⬝ h ⬝ concat_1p _) q
|
||||
rec_on r (take q h, concat_1p _ ⬝ h ⬝ concat_1p _) q
|
||||
|
||||
definition moveR_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
||||
r ≈ q ⬝ p → r ⬝ p⁻¹ ≈ q :=
|
||||
induction_on p (take r h, concat_p1 _ ⬝ h ⬝ concat_p1 _) r
|
||||
rec_on p (take r h, concat_p1 _ ⬝ h ⬝ concat_p1 _) r
|
||||
|
||||
definition moveL_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
r⁻¹ ⬝ q ≈ p → q ≈ r ⬝ p :=
|
||||
induction_on r (take p h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) p
|
||||
rec_on r (take p h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) p
|
||||
|
||||
definition moveL_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
q ⬝ p⁻¹ ≈ r → q ≈ r ⬝ p :=
|
||||
induction_on p (take q h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) q
|
||||
rec_on p (take q h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) q
|
||||
|
||||
definition moveL_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
||||
r ⬝ q ≈ p → q ≈ r⁻¹ ⬝ p :=
|
||||
induction_on r (take q h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) q
|
||||
rec_on r (take q h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) q
|
||||
|
||||
definition moveL_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
||||
q ⬝ p ≈ r → q ≈ r ⬝ p⁻¹ :=
|
||||
induction_on p (take r h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) r
|
||||
rec_on p (take r h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) r
|
||||
|
||||
definition moveL_1M {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
p ⬝ q⁻¹ ≈ idp → p ≈ q :=
|
||||
induction_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
||||
rec_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
||||
|
||||
definition moveL_M1 {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
q⁻¹ ⬝ p ≈ idp → p ≈ q :=
|
||||
induction_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
||||
rec_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
||||
|
||||
definition moveL_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
p ⬝ q ≈ idp → p ≈ q⁻¹ :=
|
||||
induction_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
||||
rec_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
||||
|
||||
definition moveL_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
q ⬝ p ≈ idp → p ≈ q⁻¹ :=
|
||||
induction_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
||||
rec_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
||||
|
||||
definition moveR_M1 {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
idp ≈ p⁻¹ ⬝ q → p ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
|
||||
definition moveR_1M {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
idp ≈ q ⬝ p⁻¹ → p ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
|
||||
definition moveR_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
idp ≈ q ⬝ p → p⁻¹ ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
|
||||
definition moveR_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
idp ≈ p ⬝ q → p⁻¹ ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
|
||||
|
||||
-- Transport
|
||||
-- ---------
|
||||
|
||||
definition transport {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) : P y :=
|
||||
path.induction_on p u
|
||||
path.rec_on p u
|
||||
|
||||
-- This idiom makes the operation right associative.
|
||||
notation p `▹`:65 x:64 := transport _ p x
|
||||
|
||||
definition ap ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x ≈ y) : f x ≈ f y :=
|
||||
path.induction_on p idp
|
||||
path.rec_on p idp
|
||||
|
||||
definition ap01 := ap
|
||||
|
||||
|
@ -194,15 +190,15 @@ definition pointwise_paths {A : Type} {P : A → Type} (f g : Πx, P x) : Type :
|
|||
notation f ∼ g := pointwise_paths f g
|
||||
|
||||
definition apD10 {A} {B : A → Type} {f g : Πx, B x} (H : f ≈ g) : f ∼ g :=
|
||||
λx, path.induction_on H idp
|
||||
λx, path.rec_on H idp
|
||||
|
||||
definition ap10 {A B} {f g : A → B} (H : f ≈ g) : f ∼ g := apD10 H
|
||||
|
||||
definition ap11 {A B} {f g : A → B} (H : f ≈ g) {x y : A} (p : x ≈ y) : f x ≈ g y :=
|
||||
induction_on H (induction_on p idp)
|
||||
rec_on H (rec_on p idp)
|
||||
|
||||
definition apD {A:Type} {B : A → Type} (f : Πa:A, B a) {x y : A} (p : x ≈ y) : p ▹ (f x) ≈ f y :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- calc enviroment
|
||||
|
@ -218,19 +214,19 @@ calc_refl idpath
|
|||
|
||||
definition moveR_transport_p {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
||||
u ≈ p⁻¹ ▹ v → p ▹ u ≈ v :=
|
||||
induction_on p (take v, id) v
|
||||
rec_on p (take v, id) v
|
||||
|
||||
definition moveR_transport_V {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
||||
u ≈ p ▹ v → p⁻¹ ▹ u ≈ v :=
|
||||
induction_on p (take u, id) u
|
||||
rec_on p (take u, id) u
|
||||
|
||||
definition moveL_transport_V {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
||||
p ▹ u ≈ v → u ≈ p⁻¹ ▹ v :=
|
||||
induction_on p (take v, id) v
|
||||
rec_on p (take v, id) v
|
||||
|
||||
definition moveL_transport_p {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
||||
p⁻¹ ▹ u ≈ v → u ≈ p ▹ v :=
|
||||
induction_on p (take u, id) u
|
||||
rec_on p (take u, id) u
|
||||
|
||||
-- Functoriality of functions
|
||||
-- --------------------------
|
||||
|
@ -246,109 +242,109 @@ definition apD_1 {A B} (x : A) (f : Π x : A, B x) : apD f idp ≈ idp :> (f x
|
|||
-- Functions commute with concatenation.
|
||||
definition ap_pp {A B : Type} (f : A → B) {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
ap f (p ⬝ q) ≈ (ap f p) ⬝ (ap f q) :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition ap_p_pp {A B : Type} (f : A → B) {w x y z : A} (r : f w ≈ f x) (p : x ≈ y) (q : y ≈ z) :
|
||||
r ⬝ (ap f (p ⬝ q)) ≈ (r ⬝ ap f p) ⬝ (ap f q) :=
|
||||
induction_on q (take p, induction_on p (concat_p_pp r idp idp)) p
|
||||
rec_on q (take p, rec_on p (concat_p_pp r idp idp)) p
|
||||
|
||||
definition ap_pp_p {A B : Type} (f : A → B) {w x y z : A} (p : x ≈ y) (q : y ≈ z) (r : f z ≈ f w) :
|
||||
(ap f (p ⬝ q)) ⬝ r ≈ (ap f p) ⬝ (ap f q ⬝ r) :=
|
||||
induction_on q (induction_on p (take r, concat_pp_p _ _ _)) r
|
||||
rec_on q (rec_on p (take r, concat_pp_p _ _ _)) r
|
||||
|
||||
-- Functions commute with path inverses.
|
||||
definition inverse_ap {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : (ap f p)⁻¹ ≈ ap f (p⁻¹) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition ap_V {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : ap f (p⁻¹) ≈ (ap f p)⁻¹ :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- [ap] itself is functorial in the first argument.
|
||||
|
||||
definition ap_idmap {A : Type} {x y : A} (p : x ≈ y) : ap id p ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition ap_compose {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
||||
ap (g ∘ f) p ≈ ap g (ap f p) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Sometimes we don't have the actual function [compose].
|
||||
definition ap_compose' {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
||||
ap (λa, g (f a)) p ≈ ap g (ap f p) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- The action of constant maps.
|
||||
definition ap_const {A B : Type} {x y : A} (p : x ≈ y) (z : B) :
|
||||
ap (λu, z) p ≈ idp :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Naturality of [ap].
|
||||
definition concat_Ap {A B : Type} {f g : A → B} (p : Π x, f x ≈ g x) {x y : A} (q : x ≈ y) :
|
||||
(ap f q) ⬝ (p y) ≈ (p x) ⬝ (ap g q) :=
|
||||
induction_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
||||
rec_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
||||
|
||||
-- Naturality of [ap] at identity.
|
||||
definition concat_A1p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) :
|
||||
(ap f q) ⬝ (p y) ≈ (p x) ⬝ q :=
|
||||
induction_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
||||
rec_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
||||
|
||||
definition concat_pA1 {A : Type} {f : A → A} (p : Πx, x ≈ f x) {x y : A} (q : x ≈ y) :
|
||||
(p x) ⬝ (ap f q) ≈ q ⬝ (p y) :=
|
||||
induction_on q (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
||||
rec_on q (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
||||
|
||||
-- Naturality with other paths hanging around.
|
||||
|
||||
definition concat_pA_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
||||
{w z : B} (r : w ≈ f x) (s : g y ≈ z) :
|
||||
(r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (ap g q ⬝ s) :=
|
||||
induction_on s (induction_on q idp)
|
||||
rec_on s (rec_on q idp)
|
||||
|
||||
definition concat_pA_p {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
||||
{w : B} (r : w ≈ f x) :
|
||||
(r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ ap g q :=
|
||||
induction_on q idp
|
||||
rec_on q idp
|
||||
|
||||
-- TODO: try this using the simplifier, and compare proofs
|
||||
definition concat_A_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
||||
{z : B} (s : g y ≈ z) :
|
||||
(ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (ap g q ⬝ s) :=
|
||||
induction_on s (induction_on q
|
||||
rec_on s (rec_on q
|
||||
(calc
|
||||
(ap f idp) ⬝ (p x ⬝ idp) ≈ idp ⬝ p x : idp
|
||||
... ≈ p x : concat_1p _
|
||||
... ≈ (p x) ⬝ (ap g idp ⬝ idp) : idp))
|
||||
-- This also works:
|
||||
-- induction_on s (induction_on q (concat_1p _ ▹ idp))
|
||||
-- rec_on s (rec_on q (concat_1p _ ▹ idp))
|
||||
|
||||
definition concat_pA1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
||||
{w z : A} (r : w ≈ f x) (s : y ≈ z) :
|
||||
(r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (q ⬝ s) :=
|
||||
induction_on s (induction_on q idp)
|
||||
rec_on s (rec_on q idp)
|
||||
|
||||
definition concat_pp_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
||||
{w z : A} (r : w ≈ x) (s : g y ≈ z) :
|
||||
(r ⬝ p x) ⬝ (ap g q ⬝ s) ≈ (r ⬝ q) ⬝ (p y ⬝ s) :=
|
||||
induction_on s (induction_on q idp)
|
||||
rec_on s (rec_on q idp)
|
||||
|
||||
definition concat_pA1_p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
||||
{w : A} (r : w ≈ f x) :
|
||||
(r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ q :=
|
||||
induction_on q idp
|
||||
rec_on q idp
|
||||
|
||||
definition concat_A1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
||||
{z : A} (s : y ≈ z) :
|
||||
(ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (q ⬝ s) :=
|
||||
induction_on s (induction_on q (concat_1p _ ▹ idp))
|
||||
rec_on s (rec_on q (concat_1p _ ▹ idp))
|
||||
|
||||
definition concat_pp_A1 {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
||||
{w : A} (r : w ≈ x) :
|
||||
(r ⬝ p x) ⬝ ap g q ≈ (r ⬝ q) ⬝ p y :=
|
||||
induction_on q idp
|
||||
rec_on q idp
|
||||
|
||||
definition concat_p_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
||||
{z : A} (s : g y ≈ z) :
|
||||
p x ⬝ (ap g q ⬝ s) ≈ q ⬝ (p y ⬝ s) :=
|
||||
induction_on s (induction_on q (concat_1p _ ▹ idp))
|
||||
rec_on s (rec_on q (concat_1p _ ▹ idp))
|
||||
|
||||
|
||||
-- Action of [apD10] and [ap10] on paths
|
||||
|
@ -360,11 +356,11 @@ definition apD10_1 {A} {B : A → Type} (f : Πx, B x) (x : A) : apD10 (idpath f
|
|||
|
||||
definition apD10_pp {A} {B : A → Type} {f f' f'' : Πx, B x} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
|
||||
apD10 (h ⬝ h') x ≈ apD10 h x ⬝ apD10 h' x :=
|
||||
induction_on h (take h', induction_on h' idp) h'
|
||||
rec_on h (take h', rec_on h' idp) h'
|
||||
|
||||
definition apD10_V {A : Type} {B : A → Type} {f g : Πx : A, B x} (h : f ≈ g) (x : A) :
|
||||
apD10 (h⁻¹) x ≈ (apD10 h x)⁻¹ :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
definition ap10_1 {A B} {f : A → B} (x : A) : ap10 (idpath f) x ≈ idp := idp
|
||||
|
||||
|
@ -376,7 +372,7 @@ definition ap10_V {A B} {f g : A→B} (h : f ≈ g) (x:A) : ap10 (h⁻¹) x ≈
|
|||
-- [ap10] also behaves nicely on paths produced by [ap]
|
||||
definition ap_ap10 {A B C} (f g : A → B) (h : B → C) (p : f ≈ g) (a : A) :
|
||||
ap h (ap10 p a) ≈ ap10 (ap (λ f', h ∘ f') p) a:=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- Transport and the groupoid structure of paths
|
||||
|
@ -387,7 +383,7 @@ definition transport_1 {A : Type} (P : A → Type) {x : A} (u : P x) :
|
|||
|
||||
definition transport_pp {A : Type} (P : A → Type) {x y z : A} (p : x ≈ y) (q : y ≈ z) (u : P x) :
|
||||
p ⬝ q ▹ u ≈ q ▹ p ▹ u :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition transport_pV {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P y) :
|
||||
p ▹ p⁻¹ ▹ z ≈ z :=
|
||||
|
@ -403,18 +399,18 @@ definition transport_p_pp {A : Type} (P : A → Type)
|
|||
ap (transport P r) (transport_pp P p q u)
|
||||
≈ (transport_pp P p (q ⬝ r) u) ⬝ (transport_pp P q r (p ▹ u))
|
||||
:> ((p ⬝ (q ⬝ r)) ▹ u ≈ r ▹ q ▹ p ▹ u) :=
|
||||
induction_on r (induction_on q (induction_on p idp))
|
||||
rec_on r (rec_on q (rec_on p idp))
|
||||
|
||||
-- Here is another coherence lemma for transport.
|
||||
definition transport_pVp {A} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
|
||||
transport_pV P p (transport P p z) ≈ ap (transport P p) (transport_Vp P p z) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Dependent transport in a doubly dependent type.
|
||||
definition transportD {A : Type} (B : A → Type) (C : Π a : A, B a → Type)
|
||||
{x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1 y) :
|
||||
C x2 (p ▹ y) :=
|
||||
induction_on p z
|
||||
rec_on p z
|
||||
|
||||
-- Transporting along higher-dimensional paths
|
||||
definition transport2 {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : P x) :
|
||||
|
@ -425,26 +421,26 @@ ap (λp', p' ▹ z) r
|
|||
definition transport2_is_ap10 {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q)
|
||||
(z : Q x) :
|
||||
transport2 Q r z ≈ ap10 (ap (transport Q) r) z :=
|
||||
induction_on r idp
|
||||
rec_on r idp
|
||||
|
||||
definition transport2_p2p {A : Type} (P : A → Type) {x y : A} {p1 p2 p3 : x ≈ y}
|
||||
(r1 : p1 ≈ p2) (r2 : p2 ≈ p3) (z : P x) :
|
||||
transport2 P (r1 ⬝ r2) z ≈ transport2 P r1 z ⬝ transport2 P r2 z :=
|
||||
induction_on r1 (induction_on r2 idp)
|
||||
rec_on r1 (rec_on r2 idp)
|
||||
|
||||
definition transport2_V {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : Q x) :
|
||||
transport2 Q (r⁻¹) z ≈ ((transport2 Q r z)⁻¹) :=
|
||||
induction_on r idp
|
||||
rec_on r idp
|
||||
|
||||
definition concat_AT {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} {z w : P x} (r : p ≈ q)
|
||||
(s : z ≈ w) :
|
||||
ap (transport P p) s ⬝ transport2 P r w ≈ transport2 P r z ⬝ ap (transport P q) s :=
|
||||
induction_on r (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
||||
rec_on r (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
||||
|
||||
-- TODO (from Coq library): What should this be called?
|
||||
definition ap_transport {A} {P Q : A → Type} {x y : A} (p : x ≈ y) (f : Πx, P x → Q x) (z : P x) :
|
||||
f y (p ▹ z) ≈ (p ▹ (f x z)) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- Transporting in particular fibrations
|
||||
|
@ -462,33 +458,33 @@ subdirectory. Here we consider only the most basic cases.
|
|||
-- Transporting in a constant fibration.
|
||||
definition transport_const {A B : Type} {x1 x2 : A} (p : x1 ≈ x2) (y : B) :
|
||||
transport (λx, B) p y ≈ y :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition transport2_const {A B : Type} {x1 x2 : A} {p q : x1 ≈ x2} (r : p ≈ q) (y : B) :
|
||||
transport_const p y ≈ transport2 (λu, B) r y ⬝ transport_const q y :=
|
||||
induction_on r (concat_1p _)⁻¹
|
||||
rec_on r (concat_1p _)⁻¹
|
||||
|
||||
-- Transporting in a pulled back fibration.
|
||||
definition transport_compose {A B} {x y : A} (P : B → Type) (f : A → B) (p : x ≈ y) (z : P (f x)) :
|
||||
transport (λx, P (f x)) p z ≈ transport P (ap f p) z :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition transport_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') :
|
||||
transport (λh : B → C, g ∘ f ≈ h ∘ f) p idp ≈ ap (λh, h ∘ f) p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition apD10_ap_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') (a : A) :
|
||||
apD10 (ap (λh : B → C, h ∘ f) p) a ≈ apD10 p (f a) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition apD10_ap_postcompose {A B C} (f : B → C) (g g' : A → B) (p : g ≈ g') (a : A) :
|
||||
apD10 (ap (λh : A → B, f ∘ h) p) a ≈ ap f (apD10 p a) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- A special case of [transport_compose] which seems to come up a lot.
|
||||
definition transport_idmap_ap A (P : A → Type) x y (p : x ≈ y) (u : P x) :
|
||||
transport P p u ≈ transport (λz, z) (ap P p) u :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- The behavior of [ap] and [apD]
|
||||
|
@ -497,7 +493,7 @@ induction_on p idp
|
|||
-- In a constant fibration, [apD] reduces to [ap], modulo [transport_const].
|
||||
definition apD_const {A B} {x y : A} (f : A → B) (p: x ≈ y) :
|
||||
apD f p ≈ transport_const p (f x) ⬝ ap f p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- The 2-dimensional groupoid structure
|
||||
|
@ -506,13 +502,13 @@ induction_on p idp
|
|||
-- Horizontal composition of 2-dimensional paths.
|
||||
definition concat2 {A} {x y z : A} {p p' : x ≈ y} {q q' : y ≈ z} (h : p ≈ p') (h' : q ≈ q') :
|
||||
p ⬝ q ≈ p' ⬝ q' :=
|
||||
induction_on h (induction_on h' idp)
|
||||
rec_on h (rec_on h' idp)
|
||||
|
||||
infixl `◾`:75 := concat2
|
||||
|
||||
-- 2-dimensional path inversion
|
||||
definition inverse2 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : p⁻¹ ≈ q⁻¹ :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
|
||||
-- Whiskering
|
||||
|
@ -527,47 +523,47 @@ h ◾ idp
|
|||
-- Unwhiskering, a.k.a. cancelling
|
||||
|
||||
definition cancelL {A} {x y z : A} (p : x ≈ y) (q r : y ≈ z) : (p ⬝ q ≈ p ⬝ r) → (q ≈ r) :=
|
||||
induction_on p (take r, induction_on r (take q a, (concat_1p q)⁻¹ ⬝ a)) r q
|
||||
rec_on p (take r, rec_on r (take q a, (concat_1p q)⁻¹ ⬝ a)) r q
|
||||
|
||||
definition cancelR {A} {x y z : A} (p q : x ≈ y) (r : y ≈ z) : (p ⬝ r ≈ q ⬝ r) → (p ≈ q) :=
|
||||
induction_on r (induction_on p (take q a, a ⬝ concat_p1 q)) q
|
||||
rec_on r (rec_on p (take q a, a ⬝ concat_p1 q)) q
|
||||
|
||||
-- Whiskering and identity paths.
|
||||
|
||||
definition whiskerR_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
(concat_p1 p)⁻¹ ⬝ whiskerR h idp ⬝ concat_p1 q ≈ h :=
|
||||
induction_on h (induction_on p idp)
|
||||
rec_on h (rec_on p idp)
|
||||
|
||||
definition whiskerR_1p {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
whiskerR idp q ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
||||
induction_on q idp
|
||||
rec_on q idp
|
||||
|
||||
definition whiskerL_p1 {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
whiskerL p idp ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
||||
induction_on q idp
|
||||
rec_on q idp
|
||||
|
||||
definition whiskerL_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
(concat_1p p) ⁻¹ ⬝ whiskerL idp h ⬝ concat_1p q ≈ h :=
|
||||
induction_on h (induction_on p idp)
|
||||
rec_on h (rec_on p idp)
|
||||
|
||||
definition concat2_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
h ◾ idp ≈ whiskerR h idp :> (p ⬝ idp ≈ q ⬝ idp) :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
definition concat2_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
idp ◾ h ≈ whiskerL idp h :> (idp ⬝ p ≈ idp ⬝ q) :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
-- TODO: note, 4 inductions
|
||||
-- The interchange law for concatenation.
|
||||
definition concat_concat2 {A : Type} {x y z : A} {p p' p'' : x ≈ y} {q q' q'' : y ≈ z}
|
||||
(a : p ≈ p') (b : p' ≈ p'') (c : q ≈ q') (d : q' ≈ q'') :
|
||||
(a ◾ c) ⬝ (b ◾ d) ≈ (a ⬝ b) ◾ (c ⬝ d) :=
|
||||
induction_on d (induction_on c (induction_on b (induction_on a idp)))
|
||||
rec_on d (rec_on c (rec_on b (rec_on a idp)))
|
||||
|
||||
definition concat_whisker {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
|
||||
(whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') :=
|
||||
induction_on b (induction_on a (concat_1p _)⁻¹)
|
||||
rec_on b (rec_on a (concat_1p _)⁻¹)
|
||||
|
||||
-- Structure corresponding to the coherence equations of a bicategory.
|
||||
|
||||
|
@ -577,12 +573,12 @@ definition pentagon {A : Type} {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r :
|
|||
⬝ concat_p_pp p (q ⬝ r) s
|
||||
⬝ whiskerR (concat_p_pp p q r) s
|
||||
≈ concat_p_pp p q (r ⬝ s) ⬝ concat_p_pp (p ⬝ q) r s :=
|
||||
induction_on s (induction_on r (induction_on q (induction_on p idp)))
|
||||
rec_on s (rec_on r (rec_on q (rec_on p idp)))
|
||||
|
||||
-- The 3-cell witnessing the left unit triangle.
|
||||
definition triangulator {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
concat_p_pp p idp q ⬝ whiskerR (concat_p1 p) q ≈ whiskerL p (concat_1p q) :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p ⬝ q ≈ q ⬝ p :=
|
||||
(!whiskerR_p1 ◾ !whiskerL_1p)⁻¹
|
||||
|
@ -595,24 +591,24 @@ definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p
|
|||
|
||||
-- The action of functions on 2-dimensional paths
|
||||
definition ap02 {A B : Type} (f:A → B) {x y : A} {p q : x ≈ y} (r : p ≈ q) : ap f p ≈ ap f q :=
|
||||
induction_on r idp
|
||||
rec_on r idp
|
||||
|
||||
definition ap02_pp {A B} (f : A → B) {x y : A} {p p' p'' : x ≈ y} (r : p ≈ p') (r' : p' ≈ p'') :
|
||||
ap02 f (r ⬝ r') ≈ ap02 f r ⬝ ap02 f r' :=
|
||||
induction_on r (induction_on r' idp)
|
||||
rec_on r (rec_on r' idp)
|
||||
|
||||
definition ap02_p2p {A B} (f : A → B) {x y z : A} {p p' : x ≈ y} {q q' :y ≈ z} (r : p ≈ p')
|
||||
(s : q ≈ q') :
|
||||
ap02 f (r ◾ s) ≈ ap_pp f p q
|
||||
⬝ (ap02 f r ◾ ap02 f s)
|
||||
⬝ (ap_pp f p' q')⁻¹ :=
|
||||
induction_on r (induction_on s (induction_on q (induction_on p idp)))
|
||||
rec_on r (rec_on s (rec_on q (rec_on p idp)))
|
||||
|
||||
-- induction_on r (induction_on s (induction_on p (induction_on q idp)))
|
||||
-- rec_on r (rec_on s (rec_on p (rec_on q idp)))
|
||||
|
||||
definition apD02 {A : Type} {B : A → Type} {x y : A} {p q : x ≈ y} (f : Π x, B x) (r : p ≈ q) :
|
||||
apD f p ≈ transport2 B r (f x) ⬝ apD f q :=
|
||||
induction_on r (concat_1p _)⁻¹
|
||||
rec_on r (concat_1p _)⁻¹
|
||||
|
||||
-- And now for a lemma whose statement is much longer than its proof.
|
||||
definition apD02_pp {A} (B : A → Type) (f : Π x:A, B x) {x y : A}
|
||||
|
@ -621,7 +617,7 @@ definition apD02_pp {A} (B : A → Type) (f : Π x:A, B x) {x y : A}
|
|||
⬝ whiskerL (transport2 B r1 (f x)) (apD02 f r2)
|
||||
⬝ concat_p_pp _ _ _
|
||||
⬝ (whiskerR ((transport2_p2p B r1 r2 (f x))⁻¹) (apD f p3)) :=
|
||||
induction_on r2 (induction_on r1 (induction_on p1 idp))
|
||||
rec_on r2 (rec_on r1 (rec_on p1 idp))
|
||||
|
||||
/- From the Coq version:
|
||||
|
||||
|
|
|
@ -16,8 +16,6 @@ namespace decidable
|
|||
inr not_false_trivial
|
||||
|
||||
variables {p q : Prop}
|
||||
protected theorem induction_on {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
|
||||
decidable.rec H1 H2 H
|
||||
|
||||
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
||||
: rec_on H H1 H2 :=
|
||||
|
|
|
@ -22,6 +22,7 @@ Author: Leonardo de Moura
|
|||
#include "library/explicit.h"
|
||||
#include "library/reducible.h"
|
||||
#include "library/definitional/rec_on.h"
|
||||
#include "library/definitional/induction_on.h"
|
||||
#include "frontends/lean/decl_cmds.h"
|
||||
#include "frontends/lean/util.h"
|
||||
#include "frontends/lean/class.h"
|
||||
|
@ -650,6 +651,7 @@ struct inductive_cmd_fn {
|
|||
environment mk_aux_decls(environment env, buffer<inductive_decl> const & decls) {
|
||||
for (inductive_decl const & d : decls) {
|
||||
env = mk_rec_on(env, inductive_decl_name(d));
|
||||
env = mk_induction_on(env, inductive_decl_name(d));
|
||||
}
|
||||
return env;
|
||||
}
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
add_library(definitional rec_on.cpp)
|
||||
add_library(definitional rec_on.cpp induction_on.cpp)
|
||||
|
||||
target_link_libraries(definitional ${LEAN_LIBS})
|
||||
|
|
48
src/library/definitional/induction_on.cpp
Normal file
48
src/library/definitional/induction_on.cpp
Normal file
|
@ -0,0 +1,48 @@
|
|||
/*
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
*/
|
||||
#include "kernel/environment.h"
|
||||
#include "kernel/instantiate.h"
|
||||
#include "kernel/type_checker.h"
|
||||
#include "library/module.h"
|
||||
#include "library/protected.h"
|
||||
|
||||
namespace lean {
|
||||
environment mk_induction_on(environment const & env, name const & n) {
|
||||
if (!env.impredicative())
|
||||
throw exception("induction_on generation failed, Prop/Type.{0} is not impredicative in the given environment");
|
||||
name rec_on_name(n, "rec_on");
|
||||
name induction_on_name(n, "induction_on");
|
||||
name_generator ngen;
|
||||
declaration rec_on_decl = env.get(rec_on_name);
|
||||
declaration ind_decl = env.get(n);
|
||||
unsigned rec_on_num_univs = length(rec_on_decl.get_univ_params());
|
||||
unsigned ind_num_univs = length(ind_decl.get_univ_params());
|
||||
bool opaque = false;
|
||||
bool use_conv_opt = true;
|
||||
environment new_env = env;
|
||||
if (rec_on_num_univs == ind_num_univs) {
|
||||
// easy case, induction_on is just an alias for rec_on
|
||||
certified_declaration cdecl = check(new_env,
|
||||
mk_definition(new_env, induction_on_name, rec_on_decl.get_univ_params(),
|
||||
rec_on_decl.get_type(), rec_on_decl.get_value(),
|
||||
opaque, rec_on_decl.get_module_idx(), use_conv_opt));
|
||||
new_env = module::add(new_env, cdecl);
|
||||
} else {
|
||||
level_param_names induction_on_univs = tail(rec_on_decl.get_univ_params());
|
||||
level_param_names from = to_list(head(rec_on_decl.get_univ_params()));
|
||||
levels to = to_list(mk_level_zero());
|
||||
expr induction_on_type = instantiate_univ_params(rec_on_decl.get_type(), from, to);
|
||||
expr induction_on_value = instantiate_univ_params(rec_on_decl.get_value(), from, to);
|
||||
certified_declaration cdecl = check(new_env,
|
||||
mk_definition(new_env, induction_on_name, induction_on_univs,
|
||||
induction_on_type, induction_on_value,
|
||||
opaque, rec_on_decl.get_module_idx(), use_conv_opt));
|
||||
new_env = module::add(new_env, cdecl);
|
||||
}
|
||||
return add_protected(new_env, induction_on_name);
|
||||
}
|
||||
}
|
19
src/library/definitional/induction_on.h
Normal file
19
src/library/definitional/induction_on.h
Normal file
|
@ -0,0 +1,19 @@
|
|||
/*
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
*/
|
||||
#pragma once
|
||||
#include "kernel/environment.h"
|
||||
|
||||
namespace lean {
|
||||
/** \brief Given an inductive datatype \c n in \c env, add
|
||||
<tt>n.induction_on</tt> to the environment.
|
||||
|
||||
\remark Throws an exception if \c n is not an inductive datatype.
|
||||
|
||||
\remark Throws an exception if <tt>n.rec_on</tt> is not defined in the given environment.
|
||||
*/
|
||||
environment mk_induction_on(environment const & env, name const & n);
|
||||
}
|
|
@ -12,6 +12,8 @@ namespace lean {
|
|||
<tt>n.rec_on</tt> to the environment.
|
||||
|
||||
\remark <tt>rec_on</tt> is based on <tt>n.rec</tt>
|
||||
|
||||
\remark Throws an exception if \c n is not an inductive datatype.
|
||||
*/
|
||||
environment mk_rec_on(environment const & env, name const & n);
|
||||
}
|
||||
|
|
|
@ -5,6 +5,7 @@ false|Prop
|
|||
false.rec|∀ (C : Prop), false → C
|
||||
false_elim|false → ?c
|
||||
false.rec_on|∀ (C : Prop), false → C
|
||||
false.induction_on|∀ (C : Prop), false → C
|
||||
not_false_trivial|¬ false
|
||||
true_ne_false|¬ true = false
|
||||
p_ne_false|?p → ?p ≠ false
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
pos_num.bit0|pos_num → pos_num
|
||||
pos_num.is_inhabited|inhabited pos_num
|
||||
pos_num.inc|pos_num → pos_num
|
||||
pos_num.induction_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
|
||||
pos_num.bit1|pos_num → pos_num
|
||||
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
||||
pos_num.one|pos_num
|
||||
|
@ -22,6 +23,7 @@ pos_num.size|pos_num → pos_num
|
|||
pos_num.bit0|pos_num → pos_num
|
||||
pos_num.is_inhabited|inhabited pos_num
|
||||
pos_num.inc|pos_num → pos_num
|
||||
pos_num.induction_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
|
||||
pos_num.bit1|pos_num → pos_num
|
||||
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
||||
pos_num.one|pos_num
|
||||
|
@ -33,6 +35,7 @@ pos_num.size|pos_num → pos_num
|
|||
pos_num.bit0|pos_num → pos_num
|
||||
pos_num.is_inhabited|inhabited pos_num
|
||||
pos_num.inc|pos_num → pos_num
|
||||
pos_num.induction_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
|
||||
pos_num.bit1|pos_num → pos_num
|
||||
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
|
||||
pos_num.one|pos_num
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
import hott.path tools.tactic
|
||||
|
||||
open path tactic
|
||||
open path (induction_on)
|
||||
open path (rec_on)
|
||||
|
||||
definition concat_whisker2 {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
|
||||
(whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') :=
|
||||
begin
|
||||
apply (induction_on b),
|
||||
apply (induction_on a),
|
||||
apply (rec_on b),
|
||||
apply (rec_on a),
|
||||
apply ((concat_1p _)⁻¹),
|
||||
end
|
||||
|
|
|
@ -4,8 +4,8 @@ open path
|
|||
definition concat_pV_p {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p ⬝ q⁻¹) ⬝ q ≈ p :=
|
||||
begin
|
||||
generalize p,
|
||||
apply (path.induction_on q),
|
||||
apply (path.rec_on q),
|
||||
intro p,
|
||||
apply (path.induction_on p),
|
||||
apply (path.rec_on p),
|
||||
apply idp
|
||||
end
|
||||
|
|
|
@ -11,8 +11,6 @@ rec (λ a, a) a
|
|||
theorem down_up {A : Type} (a : A) : down (up a) = a :=
|
||||
rfl
|
||||
|
||||
protected theorem induction_on {A : Type} {P : lift A → Prop} (a : lift A) (H : ∀ (a : A), P (up a)) : P a :=
|
||||
rec H a
|
||||
|
||||
theorem up_down {A : Type} (a' : lift A) : up (down a') = a' :=
|
||||
induction_on a' (λ a, rfl)
|
||||
|
|
|
@ -7,8 +7,6 @@ zero : nat,
|
|||
succ : nat → nat
|
||||
definition refl := @eq.refl
|
||||
namespace nat
|
||||
theorem induction_on {P : nat → Prop} (a : nat) (H1 : P zero) (H2 : ∀ (n : nat) (IH : P n), P (succ n)) : P a
|
||||
:= nat.rec H1 H2 a
|
||||
|
||||
definition pred (n : nat) := nat.rec zero (fun m x, m) n
|
||||
theorem pred_zero : pred zero = zero := refl _
|
||||
|
|
|
@ -17,7 +17,6 @@ axiom add_zero_right (n : nat) : n + zero = n
|
|||
axiom mul_succ_right (n m : nat) : n * succ m = n * m + n
|
||||
axiom add_assoc (n m k : nat) : (n + m) + k = n + (m + k)
|
||||
axiom add_right_comm (n m k : nat) : n + m + k = n + k + m
|
||||
axiom induction_on {P : nat → Prop} (a : nat) (H1 : P zero) (H2 : ∀ (n : nat) (IH : P n), P (succ n)) : P a
|
||||
set_option unifier.max_steps 50000
|
||||
theorem mul_add_distr_left (n m k : nat) : (n + m) * k = n * k + m * k
|
||||
:= induction_on k
|
||||
|
|
|
@ -36,9 +36,6 @@ theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m))
|
|||
|
||||
theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) : nat.rec x f (succ n) = f n (nat.rec x f n)
|
||||
|
||||
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) : P a
|
||||
:= nat.rec H1 H2 a
|
||||
|
||||
-------------------------------------------------- succ pred
|
||||
|
||||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
||||
|
|
|
@ -31,11 +31,6 @@ theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m))
|
|||
|
||||
theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) : nat.rec x f (succ n) = f n (nat.rec x f n)
|
||||
|
||||
theorem induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (succ n)) : P a
|
||||
:= nat.rec H1 H2 a
|
||||
|
||||
-------------------------------------------------- succ pred
|
||||
|
||||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
||||
:= assume H : succ n = 0,
|
||||
have H2 : true = false, from
|
||||
|
|
|
@ -22,13 +22,6 @@ notation x `≈`:50 y `:>`:0 A:0 := @path A x y
|
|||
notation `idp`:max := idpath _ -- TODO: can we / should we use `1`?
|
||||
|
||||
namespace path
|
||||
definition induction_on {A : Type} {a b : A} (p : a ≈ b)
|
||||
{C : Π (b : A) (p : a ≈ b), Type} (H : C a (idpath a)) : C b p :=
|
||||
path.rec H p
|
||||
end path
|
||||
|
||||
open path
|
||||
|
||||
-- Concatenation and inverse
|
||||
-- -------------------------
|
||||
|
||||
|
@ -52,62 +45,62 @@ definition concat_11 {A : Type} (x : A) : idpath x ⬝ idpath x ≈ idpath x :=
|
|||
|
||||
-- The identity path is a right unit.
|
||||
definition concat_p1 {A : Type} {x y : A} (p : x ≈ y) : p ⬝ idp ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- The identity path is a right unit.
|
||||
definition concat_1p {A : Type} {x y : A} (p : x ≈ y) : idp ⬝ p ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Concatenation is associative.
|
||||
definition concat_p_pp {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
||||
p ⬝ (q ⬝ r) ≈ (p ⬝ q) ⬝ r :=
|
||||
induction_on r (induction_on q idp)
|
||||
rec_on r (rec_on q idp)
|
||||
|
||||
definition concat_pp_p {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
||||
(p ⬝ q) ⬝ r ≈ p ⬝ (q ⬝ r) :=
|
||||
induction_on r (induction_on q idp)
|
||||
rec_on r (rec_on q idp)
|
||||
|
||||
-- The left inverse law.
|
||||
definition concat_pV {A : Type} {x y : A} (p : x ≈ y) : p ⬝ p^ ≈ idp :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- The right inverse law.
|
||||
definition concat_Vp {A : Type} {x y : A} (p : x ≈ y) : p^ ⬝ p ≈ idp :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
|
||||
-- redundant, following from earlier theorems.
|
||||
|
||||
definition concat_V_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : p^ ⬝ (p ⬝ q) ≈ q :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition concat_p_Vp {A : Type} {x y z : A} (p : x ≈ y) (q : x ≈ z) : p ⬝ (p^ ⬝ q) ≈ q :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition concat_pp_V {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q) ⬝ q^ ≈ p :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition concat_pV_p {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p ⬝ q^) ⬝ q ≈ p :=
|
||||
induction_on q (take p, induction_on p idp) p
|
||||
rec_on q (take p, rec_on p idp) p
|
||||
|
||||
-- Inverse distributes over concatenation
|
||||
definition inv_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q)^ ≈ q^ ⬝ p^ :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition inv_Vp {A : Type} {x y z : A} (p : y ≈ x) (q : y ≈ z) : (p^ ⬝ q)^ ≈ q^ ⬝ p :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
-- universe metavariables
|
||||
definition inv_pV {A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y) : (p ⬝ q^)^ ≈ q ⬝ p^ :=
|
||||
induction_on p (λq, induction_on q idp) q
|
||||
rec_on p (λq, rec_on q idp) q
|
||||
|
||||
definition inv_VV {A : Type} {x y z : A} (p : y ≈ x) (q : z ≈ y) : (p^ ⬝ q^)^ ≈ q ⬝ p :=
|
||||
induction_on p (induction_on q idp)
|
||||
rec_on p (rec_on q idp)
|
||||
|
||||
-- Inverse is an involution.
|
||||
definition inv_V {A : Type} {x y : A} (p : x ≈ y) : p^^ ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- Theorems for moving things around in equations
|
||||
|
@ -116,7 +109,7 @@ induction_on p idp
|
|||
definition moveR_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
p ≈ (r^ ⬝ q) → (r ⬝ p) ≈ q :=
|
||||
have gen : Πp q, p ≈ (r^ ⬝ q) → (r ⬝ p) ≈ q, from
|
||||
induction_on r
|
||||
rec_on r
|
||||
(take p q,
|
||||
assume h : p ≈ idp^ ⬝ q,
|
||||
show idp ⬝ p ≈ q, from concat_1p _ ⬝ h ⬝ concat_1p _),
|
||||
|
@ -124,63 +117,63 @@ gen p q
|
|||
|
||||
definition moveR_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
r ≈ q ⬝ p^ → r ⬝ p ≈ q :=
|
||||
induction_on p (take q r h, (concat_p1 _ ⬝ h ⬝ concat_p1 _)) q r
|
||||
rec_on p (take q r h, (concat_p1 _ ⬝ h ⬝ concat_p1 _)) q r
|
||||
|
||||
definition moveR_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
||||
p ≈ r ⬝ q → r^ ⬝ p ≈ q :=
|
||||
induction_on r (take p q h, concat_1p _ ⬝ h ⬝ concat_1p _) p q
|
||||
rec_on r (take p q h, concat_1p _ ⬝ h ⬝ concat_1p _) p q
|
||||
|
||||
definition moveR_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
||||
r ≈ q ⬝ p → r ⬝ p^ ≈ q :=
|
||||
induction_on p (take q r h, concat_p1 _ ⬝ h ⬝ concat_p1 _) q r
|
||||
rec_on p (take q r h, concat_p1 _ ⬝ h ⬝ concat_p1 _) q r
|
||||
|
||||
definition moveL_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
r^ ⬝ q ≈ p → q ≈ r ⬝ p :=
|
||||
induction_on r (take p q h, (concat_1p _)^ ⬝ h ⬝ (concat_1p _)^) p q
|
||||
rec_on r (take p q h, (concat_1p _)^ ⬝ h ⬝ (concat_1p _)^) p q
|
||||
|
||||
definition moveL_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||
q ⬝ p^ ≈ r → q ≈ r ⬝ p :=
|
||||
induction_on p (take q r h, (concat_p1 _)^ ⬝ h ⬝ (concat_p1 _)^) q r
|
||||
rec_on p (take q r h, (concat_p1 _)^ ⬝ h ⬝ (concat_p1 _)^) q r
|
||||
|
||||
definition moveL_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
||||
r ⬝ q ≈ p → q ≈ r^ ⬝ p :=
|
||||
induction_on r (take p q h, (concat_1p _)^ ⬝ h ⬝ (concat_1p _)^) p q
|
||||
rec_on r (take p q h, (concat_1p _)^ ⬝ h ⬝ (concat_1p _)^) p q
|
||||
|
||||
definition moveL_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
||||
q ⬝ p ≈ r → q ≈ r ⬝ p^ :=
|
||||
induction_on p (take q r h, (concat_p1 _)^ ⬝ h ⬝ (concat_p1 _)^) q r
|
||||
rec_on p (take q r h, (concat_p1 _)^ ⬝ h ⬝ (concat_p1 _)^) q r
|
||||
|
||||
definition moveL_1M {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
p ⬝ q^ ≈ idp → p ≈ q :=
|
||||
induction_on q (take p h, (concat_p1 _)^ ⬝ h) p
|
||||
rec_on q (take p h, (concat_p1 _)^ ⬝ h) p
|
||||
|
||||
definition moveL_M1 {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
q^ ⬝ p ≈ idp → p ≈ q :=
|
||||
induction_on q (take p h, (concat_1p _)^ ⬝ h) p
|
||||
rec_on q (take p h, (concat_1p _)^ ⬝ h) p
|
||||
|
||||
definition moveL_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
p ⬝ q ≈ idp → p ≈ q^ :=
|
||||
induction_on q (take p h, (concat_p1 _)^ ⬝ h) p
|
||||
rec_on q (take p h, (concat_p1 _)^ ⬝ h) p
|
||||
|
||||
definition moveL_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
q ⬝ p ≈ idp → p ≈ q^ :=
|
||||
induction_on q (take p h, (concat_1p _)^ ⬝ h) p
|
||||
rec_on q (take p h, (concat_1p _)^ ⬝ h) p
|
||||
|
||||
definition moveR_M1 {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
idp ≈ p^ ⬝ q → p ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
|
||||
definition moveR_1M {A : Type} {x y : A} (p q : x ≈ y) :
|
||||
idp ≈ q ⬝ p^ → p ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
|
||||
definition moveR_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
idp ≈ q ⬝ p → p^ ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||
|
||||
definition moveR_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
||||
idp ≈ p ⬝ q → p^ ≈ q :=
|
||||
induction_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
||||
|
||||
|
||||
-- Transport
|
||||
|
@ -188,7 +181,7 @@ induction_on p (take q h, h ⬝ (concat_1p _)) q
|
|||
|
||||
-- keep transparent, so transport _ idp p is definitionally equal to p
|
||||
definition transport {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) : P y :=
|
||||
path.induction_on p u
|
||||
path.rec_on p u
|
||||
|
||||
definition transport_1 {A : Type} (P : A → Type) {x : A} (u : P x) : transport _ idp u ≈ u :=
|
||||
idp
|
||||
|
@ -199,7 +192,7 @@ idp
|
|||
notation p `#`:65 x:64 := transport _ p x
|
||||
|
||||
definition ap ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x ≈ y) : f x ≈ f y :=
|
||||
path.induction_on p idp
|
||||
path.rec_on p idp
|
||||
|
||||
-- TODO: is this better than an alias? Note use of curly brackets
|
||||
definition ap01 := ap
|
||||
|
@ -210,18 +203,18 @@ definition pointwise_paths {A : Type} {P : A → Type} (f g : Πx, P x) : Type :
|
|||
infix `∼`:50 := pointwise_paths
|
||||
|
||||
definition apD10 {A} {B : A → Type} {f g : Πx, B x} (H : f ≈ g) : f ∼ g :=
|
||||
λx, path.induction_on H idp
|
||||
λx, path.rec_on H idp
|
||||
|
||||
definition ap10 {A B} {f g : A → B} (H : f ≈ g) : f ∼ g := apD10 H
|
||||
|
||||
definition ap11 {A B} {f g : A → B} (H : f ≈ g) {x y : A} (p : x ≈ y) : f x ≈ g y :=
|
||||
induction_on H (induction_on p idp)
|
||||
rec_on H (rec_on p idp)
|
||||
|
||||
-- TODO: Note that the next line breaks the proof!
|
||||
-- opaque_hint (hiding induction_on)
|
||||
-- opaque_hint (hiding rec_on)
|
||||
-- set_option pp.implicit true
|
||||
definition apD {A:Type} {B : A → Type} (f : Πa:A, B a) {x y : A} (p : x ≈ y) : p # (f x) ≈ f y :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- More theorems for moving things around in equations
|
||||
|
@ -229,19 +222,19 @@ induction_on p idp
|
|||
|
||||
definition moveR_transport_p {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
||||
u ≈ p^ # v → p # u ≈ v :=
|
||||
induction_on p (take u v, id) u v
|
||||
rec_on p (take u v, id) u v
|
||||
|
||||
definition moveR_transport_V {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
||||
u ≈ p # v → p^ # u ≈ v :=
|
||||
induction_on p (take u v, id) u v
|
||||
rec_on p (take u v, id) u v
|
||||
|
||||
definition moveL_transport_V {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
||||
p # u ≈ v → u ≈ p^ # v :=
|
||||
induction_on p (take u v, id) u v
|
||||
rec_on p (take u v, id) u v
|
||||
|
||||
definition moveL_transport_p {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
||||
p^ # u ≈ v → u ≈ p # v :=
|
||||
induction_on p (take u v, id) u v
|
||||
rec_on p (take u v, id) u v
|
||||
|
||||
|
||||
-- Functoriality of functions
|
||||
|
@ -258,54 +251,54 @@ definition apD_1 {A B} (x : A) (f : forall x : A, B x) : apD f idp ≈ idp :> (f
|
|||
-- Functions commute with concatenation.
|
||||
definition ap_pp {A B : Type} (f : A → B) {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
ap f (p ⬝ q) ≈ (ap f p) ⬝ (ap f q) :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition ap_p_pp {A B : Type} (f : A → B) {w x y z : A} (r : f w ≈ f x) (p : x ≈ y) (q : y ≈ z) :
|
||||
r ⬝ (ap f (p ⬝ q)) ≈ (r ⬝ ap f p) ⬝ (ap f q) :=
|
||||
induction_on p (take r q, induction_on q (concat_p_pp r idp idp)) r q
|
||||
rec_on p (take r q, rec_on q (concat_p_pp r idp idp)) r q
|
||||
|
||||
definition ap_pp_p {A B : Type} (f : A → B) {w x y z : A} (p : x ≈ y) (q : y ≈ z) (r : f z ≈ f w) :
|
||||
(ap f (p ⬝ q)) ⬝ r ≈ (ap f p) ⬝ (ap f q ⬝ r) :=
|
||||
induction_on p (take q, induction_on q (take r, concat_pp_p _ _ _)) q r
|
||||
rec_on p (take q, rec_on q (take r, concat_pp_p _ _ _)) q r
|
||||
|
||||
-- Functions commute with path inverses.
|
||||
definition inverse_ap {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : (ap f p)^ ≈ ap f (p^) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition ap_V {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : ap f (p^) ≈ (ap f p)^ :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- TODO: rename id to idmap?
|
||||
definition ap_idmap {A : Type} {x y : A} (p : x ≈ y) : ap id p ≈ p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition ap_compose {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
||||
ap (g ∘ f) p ≈ ap g (ap f p) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Sometimes we don't have the actual function [compose].
|
||||
definition ap_compose' {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
||||
ap (λa, g (f a)) p ≈ ap g (ap f p) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- The action of constant maps.
|
||||
definition ap_const {A B : Type} {x y : A} (p : x ≈ y) (z : B) :
|
||||
ap (λu, z) p ≈ idp :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- Naturality of [ap].
|
||||
definition concat_Ap {A B : Type} {f g : A → B} (p : forall x, f x ≈ g x) {x y : A} (q : x ≈ y) :
|
||||
(ap f q) ⬝ (p y) ≈ (p x) ⬝ (ap g q) :=
|
||||
induction_on q (concat_1p _ ⬝ (concat_p1 _)^)
|
||||
rec_on q (concat_1p _ ⬝ (concat_p1 _)^)
|
||||
|
||||
-- Naturality of [ap] at identity.
|
||||
definition concat_A1p {A : Type} {f : A → A} (p : forall x, f x ≈ x) {x y : A} (q : x ≈ y) :
|
||||
(ap f q) ⬝ (p y) ≈ (p x) ⬝ q :=
|
||||
induction_on q (concat_1p _ ⬝ (concat_p1 _)^)
|
||||
rec_on q (concat_1p _ ⬝ (concat_p1 _)^)
|
||||
|
||||
definition concat_pA1 {A : Type} {f : A → A} (p : forall x, x ≈ f x) {x y : A} (q : x ≈ y) :
|
||||
(p x) ⬝ (ap f q) ≈ q ⬝ (p y) :=
|
||||
induction_on q (concat_p1 _ ⬝ (concat_1p _)^)
|
||||
rec_on q (concat_p1 _ ⬝ (concat_1p _)^)
|
||||
|
||||
--TODO: note that the Coq proof for the preceding is
|
||||
--
|
||||
|
@ -320,7 +313,7 @@ definition concat_pA_pp {A B : Type} {f g : A → B} (p : forall x, f x ≈ g x)
|
|||
{x y : A} (q : x ≈ y)
|
||||
{w z : B} (r : w ≈ f x) (s : g y ≈ z) :
|
||||
(r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (ap g q ⬝ s) :=
|
||||
induction_on q (take s, induction_on s (take r, idp)) s r
|
||||
rec_on q (take s, rec_on s (take r, idp)) s r
|
||||
|
||||
-- Action of [apD10] and [ap10] on paths
|
||||
-- -------------------------------------
|
||||
|
@ -331,11 +324,11 @@ definition apD10_1 {A} {B : A → Type} (f : Πx, B x) (x : A) : apD10 (idpath f
|
|||
|
||||
definition apD10_pp {A} {B : A → Type} {f f' f'' : Πx, B x} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
|
||||
apD10 (h ⬝ h') x ≈ apD10 h x ⬝ apD10 h' x :=
|
||||
induction_on h (take h', induction_on h' idp) h'
|
||||
rec_on h (take h', rec_on h' idp) h'
|
||||
|
||||
definition apD10_V {A : Type} {B : A → Type} {f g : Πx : A, B x} (h : f ≈ g) (x : A) :
|
||||
apD10 (h^) x ≈ (apD10 h x)^ :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
definition ap10_1 {A B} {f : A → B} (x : A) : ap10 (idpath f) x ≈ idp := idp
|
||||
|
||||
|
@ -347,7 +340,7 @@ definition ap10_V {A B} {f g : A→B} (h : f ≈ g) (x:A) : ap10 (h^) x ≈ (ap1
|
|||
-- [ap10] also behaves nicely on paths produced by [ap]
|
||||
definition ap_ap10 {A B C} (f g : A → B) (h : B → C) (p : f ≈ g) (a : A) :
|
||||
ap h (ap10 p a) ≈ ap10 (ap (λ f', h ∘ f') p) a:=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- Transport and the groupoid structure of paths
|
||||
|
@ -359,7 +352,7 @@ induction_on p idp
|
|||
|
||||
definition transport_pp {A : Type} (P : A → Type) {x y z : A} (p : x ≈ y) (q : y ≈ z) (u : P x) :
|
||||
p ⬝ q # u ≈ q # p # u :=
|
||||
induction_on q (induction_on p idp)
|
||||
rec_on q (rec_on p idp)
|
||||
|
||||
definition transport_pV {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P y) :
|
||||
p # p^ # z ≈ z :=
|
||||
|
@ -379,27 +372,27 @@ theorem double_induction
|
|||
{C : Π(x y z : A), Π(p : x ≈ y), Π(q : y ≈ z), Type}
|
||||
(H : C x x x (idpath x) (idpath x)) :
|
||||
C x y z p q :=
|
||||
induction_on p (take z q, induction_on q H) z q
|
||||
rec_on p (take z q, rec_on q H) z q
|
||||
|
||||
theorem double_induction2
|
||||
{A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y)
|
||||
{C : Π(x y z : A), Π(p : x ≈ y), Π(q : z ≈ y), Type}
|
||||
(H : C z z z (idpath z) (idpath z)) :
|
||||
C x y z p q :=
|
||||
induction_on p (take y q, induction_on q H) y q
|
||||
rec_on p (take y q, rec_on q H) y q
|
||||
|
||||
theorem double_induction2'
|
||||
{A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y)
|
||||
{C : Π(x y z : A), Π(p : x ≈ y), Π(q : z ≈ y), Type}
|
||||
(H : C z z z (idpath z) (idpath z)) : C x y z p q :=
|
||||
induction_on p (take y q, induction_on q H) y q
|
||||
rec_on p (take y q, rec_on q H) y q
|
||||
|
||||
theorem triple_induction
|
||||
{A : Type} {x y z w : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ w)
|
||||
{C : Π(x y z w : A), Π(p : x ≈ y), Π(q : y ≈ z), Π(r: z ≈ w), Type}
|
||||
(H : C x x x x (idpath x) (idpath x) (idpath x)) :
|
||||
C x y z w p q r :=
|
||||
induction_on p (take z q, induction_on q (take w r, induction_on r H)) z q w r
|
||||
rec_on p (take z q, rec_on q (take w r, rec_on r H)) z q w r
|
||||
|
||||
-- try this again
|
||||
definition concat_pV_p_new {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p ⬝ q^) ⬝ q ≈ p :=
|
||||
|
@ -416,13 +409,13 @@ triple_induction p q r (take u, idp) u
|
|||
-- Here is another coherence lemma for transport.
|
||||
definition transport_pVp {A} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
|
||||
transport_pV P p (transport P p z) ≈ ap (transport P p) (transport_Vp P p z)
|
||||
:= induction_on p idp
|
||||
:= rec_on p idp
|
||||
|
||||
-- Dependent transport in a doubly dependent type.
|
||||
definition transportD {A : Type} (B : A → Type) (C : Π a : A, B a → Type)
|
||||
{x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1 y) :
|
||||
C x2 (p # y) :=
|
||||
induction_on p z
|
||||
rec_on p z
|
||||
|
||||
-- Transporting along higher-dimensional paths
|
||||
definition transport2 {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : P x) :
|
||||
|
@ -432,28 +425,28 @@ definition transport2 {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} (r :
|
|||
definition transport2_is_ap10 {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q)
|
||||
(z : Q x) :
|
||||
transport2 Q r z ≈ ap10 (ap (transport Q) r) z :=
|
||||
induction_on r idp
|
||||
rec_on r idp
|
||||
|
||||
definition transport2_p2p {A : Type} (P : A → Type) {x y : A} {p1 p2 p3 : x ≈ y}
|
||||
(r1 : p1 ≈ p2) (r2 : p2 ≈ p3) (z : P x) :
|
||||
transport2 P (r1 ⬝ r2) z ≈ transport2 P r1 z ⬝ transport2 P r2 z :=
|
||||
induction_on r1 (induction_on r2 idp)
|
||||
rec_on r1 (rec_on r2 idp)
|
||||
|
||||
-- TODO: another interesting case
|
||||
definition transport2_V {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : Q x) :
|
||||
transport2 Q (r^) z ≈ ((transport2 Q r z)^) :=
|
||||
-- induction_on r idp -- doesn't work
|
||||
induction_on r (idpath (inverse (transport2 Q (idpath p) z)))
|
||||
-- rec_on r idp -- doesn't work
|
||||
rec_on r (idpath (inverse (transport2 Q (idpath p) z)))
|
||||
|
||||
definition concat_AT {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} {z w : P x} (r : p ≈ q)
|
||||
(s : z ≈ w) :
|
||||
ap (transport P p) s ⬝ transport2 P r w ≈ transport2 P r z ⬝ ap (transport P q) s :=
|
||||
induction_on r (concat_p1 _ ⬝ (concat_1p _)^)
|
||||
rec_on r (concat_p1 _ ⬝ (concat_1p _)^)
|
||||
|
||||
-- TODO (from Coq library): What should this be called?
|
||||
definition ap_transport {A} {P Q : A → Type} {x y : A} (p : x ≈ y) (f : Πx, P x → Q x) (z : P x) :
|
||||
f y (p # z) ≈ (p # (f x z)) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- Transporting in particular fibrations
|
||||
|
@ -471,34 +464,34 @@ subdirectory. Here we consider only the most basic cases.
|
|||
-- Transporting in a constant fibration.
|
||||
definition transport_const {A B : Type} {x1 x2 : A} (p : x1 ≈ x2) (y : B) :
|
||||
transport (λx, B) p y ≈ y :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition transport2_const {A B : Type} {x1 x2 : A} {p q : x1 ≈ x2} (r : p ≈ q) (y : B) :
|
||||
transport_const p y ≈ transport2 (λu, B) r y ⬝ transport_const q y :=
|
||||
induction_on r (concat_1p _)^
|
||||
rec_on r (concat_1p _)^
|
||||
|
||||
-- Transporting in a pulled back fibration.
|
||||
definition transport_compose {A B} {x y : A} (P : B → Type) (f : A → B) (p : x ≈ y) (z : P (f x)) :
|
||||
transport (λx, P (f x)) p z ≈ transport P (ap f p) z :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition transport_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') :
|
||||
transport (λh : B → C, g ∘ f ≈ h ∘ f) p idp ≈ ap (λh, h ∘ f) p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition apD10_ap_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') (a : A) :
|
||||
apD10 (ap (λh : B → C, h ∘ f) p) a ≈ apD10 p (f a) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
definition apD10_ap_postcompose {A B C} (f : B → C) (g g' : A → B) (p : g ≈ g') (a : A) :
|
||||
apD10 (ap (λh : A → B, f ∘ h) p) a ≈ ap f (apD10 p a) :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
-- TODO: another example where a term has to be given explicitly
|
||||
-- A special case of [transport_compose] which seems to come up a lot.
|
||||
definition transport_idmap_ap A (P : A → Type) x y (p : x ≈ y) (u : P x) :
|
||||
transport P p u ≈ transport (λz, z) (ap P p) u :=
|
||||
induction_on p (idpath (transport (λ (z : Type), z) (ap P (idpath x)) u))
|
||||
rec_on p (idpath (transport (λ (z : Type), z) (ap P (idpath x)) u))
|
||||
|
||||
|
||||
-- The behavior of [ap] and [apD]
|
||||
|
@ -507,7 +500,7 @@ induction_on p (idpath (transport (λ (z : Type), z) (ap P (idpath x)) u))
|
|||
-- In a constant fibration, [apD] reduces to [ap], modulo [transport_const].
|
||||
definition apD_const {A B} {x y : A} (f : A → B) (p: x ≈ y) :
|
||||
apD f p ≈ transport_const p (f x) ⬝ ap f p :=
|
||||
induction_on p idp
|
||||
rec_on p idp
|
||||
|
||||
|
||||
-- The 2-dimensional groupoid structure
|
||||
|
@ -516,13 +509,13 @@ induction_on p idp
|
|||
-- Horizontal composition of 2-dimensional paths.
|
||||
definition concat2 {A} {x y z : A} {p p' : x ≈ y} {q q' : y ≈ z} (h : p ≈ p') (h' : q ≈ q') :
|
||||
p ⬝ q ≈ p' ⬝ q' :=
|
||||
induction_on h (induction_on h' idp)
|
||||
rec_on h (rec_on h' idp)
|
||||
|
||||
infixl `⬝⬝`:75 := concat2
|
||||
|
||||
-- 2-dimensional path inversion
|
||||
definition inverse2 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : p^ ≈ q^ :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
-- Whiskering
|
||||
-- ----------
|
||||
|
@ -538,47 +531,47 @@ h ⬝⬝ idp
|
|||
-- -------------------------------
|
||||
|
||||
definition cancelL {A} {x y z : A} (p : x ≈ y) (q r : y ≈ z) : (p ⬝ q ≈ p ⬝ r) → (q ≈ r) :=
|
||||
induction_on p (take r, induction_on r (take q a, (concat_1p q)^ ⬝ a)) r q
|
||||
rec_on p (take r, rec_on r (take q a, (concat_1p q)^ ⬝ a)) r q
|
||||
|
||||
definition cancelR {A} {x y z : A} (p q : x ≈ y) (r : y ≈ z) : (p ⬝ r ≈ q ⬝ r) → (p ≈ q) :=
|
||||
induction_on r (take p, induction_on p (take q a, a ⬝ concat_p1 q)) p q
|
||||
rec_on r (take p, rec_on p (take q a, a ⬝ concat_p1 q)) p q
|
||||
|
||||
-- Whiskering and identity paths.
|
||||
|
||||
definition whiskerR_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
(concat_p1 p)^ ⬝ whiskerR h idp ⬝ concat_p1 q ≈ h :=
|
||||
induction_on h (induction_on p idp)
|
||||
rec_on h (rec_on p idp)
|
||||
|
||||
definition whiskerR_1p {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
whiskerR idp q ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
||||
induction_on q idp
|
||||
rec_on q idp
|
||||
|
||||
definition whiskerL_p1 {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
whiskerL p idp ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
||||
induction_on q idp
|
||||
rec_on q idp
|
||||
|
||||
definition whiskerL_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
(concat_1p p) ^ ⬝ whiskerL idp h ⬝ concat_1p q ≈ h :=
|
||||
induction_on h (induction_on p idp)
|
||||
rec_on h (rec_on p idp)
|
||||
|
||||
definition concat2_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
h ⬝⬝ idp ≈ whiskerR h idp :> (p ⬝ idp ≈ q ⬝ idp) :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
definition concat2_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
||||
idp ⬝⬝ h ≈ whiskerL idp h :> (idp ⬝ p ≈ idp ⬝ q) :=
|
||||
induction_on h idp
|
||||
rec_on h idp
|
||||
|
||||
-- TODO: note, 4 inductions
|
||||
-- The interchange law for concatenation.
|
||||
definition concat_concat2 {A : Type} {x y z : A} {p p' p'' : x ≈ y} {q q' q'' : y ≈ z}
|
||||
(a : p ≈ p') (b : p' ≈ p'') (c : q ≈ q') (d : q' ≈ q'') :
|
||||
(a ⬝⬝ c) ⬝ (b ⬝⬝ d) ≈ (a ⬝ b) ⬝⬝ (c ⬝ d) :=
|
||||
induction_on d (induction_on c (induction_on b (induction_on a idp)))
|
||||
rec_on d (rec_on c (rec_on b (rec_on a idp)))
|
||||
|
||||
definition concat_whisker {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
|
||||
(whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') :=
|
||||
induction_on b (induction_on a (concat_1p _)^)
|
||||
rec_on b (rec_on a (concat_1p _)^)
|
||||
|
||||
-- Structure corresponding to the coherence equations of a bicategory.
|
||||
|
||||
|
@ -588,12 +581,12 @@ definition pentagon {A : Type} {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r :
|
|||
⬝ concat_p_pp p (q ⬝ r) s
|
||||
⬝ whiskerR (concat_p_pp p q r) s
|
||||
≈ concat_p_pp p q (r ⬝ s) ⬝ concat_p_pp (p ⬝ q) r s :=
|
||||
induction_on p (take q, induction_on q (take r, induction_on r (take s, induction_on s idp))) q r s
|
||||
rec_on p (take q, rec_on q (take r, rec_on r (take s, rec_on s idp))) q r s
|
||||
|
||||
-- The 3-cell witnessing the left unit triangle.
|
||||
definition triangulator {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||
concat_p_pp p idp q ⬝ whiskerR (concat_p1 p) q ≈ whiskerL p (concat_1p q) :=
|
||||
induction_on p (take q, induction_on q idp) q
|
||||
rec_on p (take q, rec_on q idp) q
|
||||
|
||||
definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p ⬝ q ≈ q ⬝ p :=
|
||||
(whiskerR_p1 p ⬝⬝ whiskerL_1p q)^
|
||||
|
@ -607,19 +600,20 @@ definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p
|
|||
|
||||
-- The action of functions on 2-dimensional paths
|
||||
definition ap02 {A B : Type} (f:A → B) {x y : A} {p q : x ≈ y} (r : p ≈ q) : ap f p ≈ ap f q :=
|
||||
induction_on r idp
|
||||
rec_on r idp
|
||||
|
||||
definition ap02_pp {A B} (f : A → B) {x y : A} {p p' p'' : x ≈ y} (r : p ≈ p') (r' : p' ≈ p'') :
|
||||
ap02 f (r ⬝ r') ≈ ap02 f r ⬝ ap02 f r' :=
|
||||
induction_on r (induction_on r' idp)
|
||||
rec_on r (rec_on r' idp)
|
||||
|
||||
definition ap02_p2p {A B} (f : A→B) {x y z : A} {p p' : x ≈ y} {q q' :y ≈ z} (r : p ≈ p')
|
||||
(s : q ≈ q') :
|
||||
ap02 f (r ⬝⬝ s) ≈ ap_pp f p q
|
||||
⬝ (ap02 f r ⬝⬝ ap02 f s)
|
||||
⬝ (ap_pp f p' q')^ :=
|
||||
induction_on r (induction_on s (induction_on q (induction_on p idp)))
|
||||
rec_on r (rec_on s (rec_on q (rec_on p idp)))
|
||||
|
||||
definition apD02 {A : Type} {B : A → Type} {x y : A} {p q : x ≈ y} (f : Π x, B x) (r : p ≈ q) :
|
||||
apD f p ≈ transport2 B r (f x) ⬝ apD f q :=
|
||||
induction_on r (concat_1p _)^
|
||||
rec_on r (concat_1p _)^
|
||||
end path
|
||||
|
|
Loading…
Reference in a new issue