feat(frontends/lean): add 'obtains' expression

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-11 04:08:51 +01:00
parent 6000270d35
commit cf34f75ab5
5 changed files with 57 additions and 7 deletions

View file

@ -204,7 +204,8 @@ theorem exists_unique_intro {A : Type} {p : A → Bool} (w : A) (H1 : p w) (H2 :
:= exists_intro w (and_intro H1 H2) := exists_intro w (and_intro H1 H2)
theorem exists_unique_elim {A : Type} {p : A → Bool} {b : Bool} (H2 : ∃! x, p x) (H1 : ∀ x, p x → (∀ y, y ≠ x → ¬ p y) → b) : b theorem exists_unique_elim {A : Type} {p : A → Bool} {b : Bool} (H2 : ∃! x, p x) (H1 : ∀ x, p x → (∀ y, y ≠ x → ¬ p y) → b) : b
:= exists_elim H2 (λ w Hw, H1 w (and_elim_left Hw) (and_elim_right Hw)) := obtains w Hw, from H2,
H1 w (and_elim_left Hw) (and_elim_right Hw)
inductive inhabited (A : Type) : Bool := inductive inhabited (A : Type) : Bool :=
| inhabited_intro : A → inhabited A | inhabited_intro : A → inhabited A
@ -236,15 +237,15 @@ definition heq {A B : Type} (a : A) (b : B) := ∃ H, cast H a = b
infixl `==`:50 := heq infixl `==`:50 := heq
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
:= exists_elim H (λ H Hw, H) := obtains w Hw, from H, w
theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b
:= exists_intro (refl A) (trans (cast_refl a) H) := exists_intro (refl A) (trans (cast_refl a) H)
theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b
:= exists_elim H (λ (H : A = A) (Hw : cast H a = b), := obtains (w : A = A) (Hw : cast w a = b), from H,
calc a = cast H a : symm (cast_eq H a) calc a = cast w a : symm (cast_eq w a)
... = b : Hw) ... = b : Hw
theorem heq_refl {A : Type} (a : A) : a == a theorem heq_refl {A : Type} (a : A) : a == a
:= eq_to_heq (refl a) := eq_to_heq (refl a)

View file

@ -26,7 +26,7 @@
'("--") ;; comments start with '("--") ;; comments start with
'("import" "abbreviation" "opaque_hint" "tactic_hint" "definition" "hiding" "exposing" "parameter" "parameters" "proof" "qed" "conjecture" "hypothesis" "lemma" "corollary" "variable" "variables" "print" "theorem" "axiom" "inductive" "with" "universe" "alias" "help" "environment" "options" "precedence" "postfix" "prefix" "calc_trans" "calc_subst" "calc_refl" "infix" "infixl" "infixr" "notation" "eval" "check" "exit" "coercion" "end" "using" "namespace" "builtin" "including" "class" "instance" "section" "set_option" "add_rewrite") ;; some keywords '("import" "abbreviation" "opaque_hint" "tactic_hint" "definition" "hiding" "exposing" "parameter" "parameters" "proof" "qed" "conjecture" "hypothesis" "lemma" "corollary" "variable" "variables" "print" "theorem" "axiom" "inductive" "with" "universe" "alias" "help" "environment" "options" "precedence" "postfix" "prefix" "calc_trans" "calc_subst" "calc_refl" "infix" "infixl" "infixr" "notation" "eval" "check" "exit" "coercion" "end" "using" "namespace" "builtin" "including" "class" "instance" "section" "set_option" "add_rewrite") ;; some keywords
'(("\\_<\\(Bool\\|Int\\|Nat\\|Real\\|Type\\|TypeU\\|\\|\\)\\_>" . 'font-lock-type-face) '(("\\_<\\(Bool\\|Int\\|Nat\\|Real\\|Type\\|TypeU\\|\\|\\)\\_>" . 'font-lock-type-face)
("\\_<\\(calc\\|have\\|show\\|by\\|in\\|let\\|forall\\|fun\\|exists\\|if\\|then\\|else\\|assume\\|take\\|obtain\\|from\\)\\_>" . font-lock-keyword-face) ("\\_<\\(calc\\|have\\|obtains\\|show\\|by\\|in\\|let\\|forall\\|fun\\|exists\\|if\\|then\\|else\\|assume\\|take\\|obtain\\|from\\)\\_>" . font-lock-keyword-face)
("\"[^\"]*\"" . 'font-lock-string-face) ("\"[^\"]*\"" . 'font-lock-string-face)
("\\(->\\|↔\\|/\\\\\\|==\\|\\\\/\\|[*+/<=>¬∧∨≠≤≥-]\\)" . 'font-lock-constant-face) ("\\(->\\|↔\\|/\\\\\\|==\\|\\\\/\\|[*+/<=>¬∧∨≠≤≥-]\\)" . 'font-lock-constant-face)
("\\\\|→\\|∃\\|∀\\|:\\|:=\\)" . font-lock-constant-face) ("\\\\|→\\|∃\\|∀\\|:\\|:=\\)" . font-lock-constant-face)

View file

@ -278,6 +278,47 @@ static expr parse_show(parser & p, unsigned, expr const *, pos_info const & pos)
return mk_let(p, H_show, prop, proof, Var(0), pos, mk_contextual_info(false)); return mk_let(p, H_show, prop, proof, Var(0), pos, mk_contextual_info(false));
} }
static name g_exists_elim("exists_elim");
static expr parse_obtains(parser & p, unsigned, expr const *, pos_info const & pos) {
if (!p.env().find(g_exists_elim))
throw parser_error("invalid use of 'obtains' expression, environment does not contain 'exists_elim' theorem", pos);
// exists_elim {A : Type} {P : A → Bool} {B : Bool} (H1 : ∃ x : A, P x) (H2 : ∀ (a : A) (H : P a), B)
buffer<expr> ps;
auto b_pos = p.pos();
environment env = p.parse_binders(ps);
unsigned num_ps = ps.size();
if (num_ps < 2)
throw parser_error("invalid 'obtains' expression, at least 2 binders expected", b_pos);
bool is_fact = false;
if (p.curr_is_token(g_fact)) {
p.next();
is_fact = true;
}
if (!is_fact) {
expr H = ps[num_ps-1];
ps[num_ps-1] = update_local(H, mlocal_type(H), local_info(H).update_contextual(false));
}
p.check_token_next(g_comma, "invalid 'obtains' expression, ',' expected");
p.check_token_next(g_from, "invalid 'obtains' expression, 'from' expected");
expr H1 = p.parse_expr();
p.check_token_next(g_comma, "invalid 'obtains' expression, ',' expected");
expr b = p.parse_scoped_expr(ps, env);
expr H = ps[num_ps-1];
unsigned i = num_ps-1;
while (i > 1) {
--i;
expr a = ps[i];
expr H_aux = mk_local(p.mk_fresh_name(), mk_expr_placeholder(), mk_contextual_info(is_fact));
expr H2 = Fun({a, H}, b);
b = mk_constant(g_exists_elim)(H_aux, H2);
H = H_aux;
}
expr a = ps[0];
expr H2 = Fun({a, H}, b);
expr r = mk_constant(g_exists_elim)(H1, H2);
return p.rec_save_pos(r, pos);
}
static expr parse_calc_expr(parser & p, unsigned, expr const *, pos_info const &) { static expr parse_calc_expr(parser & p, unsigned, expr const *, pos_info const &) {
return parse_calc(p); return parse_calc(p);
} }
@ -329,6 +370,7 @@ parse_table init_nud_table() {
r = r.add({transition("by", mk_ext_action(parse_by))}, x0); r = r.add({transition("by", mk_ext_action(parse_by))}, x0);
r = r.add({transition("have", mk_ext_action(parse_have))}, x0); r = r.add({transition("have", mk_ext_action(parse_have))}, x0);
r = r.add({transition("show", mk_ext_action(parse_show))}, x0); r = r.add({transition("show", mk_ext_action(parse_show))}, x0);
r = r.add({transition("obtains", mk_ext_action(parse_obtains))}, x0);
r = r.add({transition("(", Expr), transition(")", Skip)}, x0); r = r.add({transition("(", Expr), transition(")", Skip)}, x0);
r = r.add({transition("fun", Binders), transition(",", mk_scoped_expr_action(x0))}, x0); r = r.add({transition("fun", Binders), transition(",", mk_scoped_expr_action(x0))}, x0);
r = r.add({transition("Pi", Binders), transition(",", mk_scoped_expr_action(x0, 0, false))}, x0); r = r.add({transition("Pi", Binders), transition(",", mk_scoped_expr_action(x0, 0, false))}, x0);

View file

@ -65,7 +65,7 @@ static char const * g_cup = "\u2294";
token_table init_token_table() { token_table init_token_table() {
token_table t; token_table t;
std::pair<char const *, unsigned> builtin[] = std::pair<char const *, unsigned> builtin[] =
{{"fun", 0}, {"Pi", 0}, {"let", 0}, {"in", 0}, {"have", 0}, {"show", 0}, {"by", 0}, {"then", 0}, {{"fun", 0}, {"Pi", 0}, {"let", 0}, {"in", 0}, {"have", 0}, {"show", 0}, {"obtains", 0}, {"by", 0}, {"then", 0},
{"from", 0}, {"(", g_max_prec}, {")", 0}, {"{", g_max_prec}, {"}", 0}, {"_", g_max_prec}, {"from", 0}, {"(", g_max_prec}, {")", 0}, {"{", g_max_prec}, {"}", 0}, {"_", g_max_prec},
{"[", g_max_prec}, {"]", 0}, {"", g_max_prec}, {"", 0}, {".{", 0}, {"Type", g_max_prec}, {"Type'", g_max_prec}, {"[", g_max_prec}, {"]", 0}, {"", g_max_prec}, {"", 0}, {".{", 0}, {"Type", g_max_prec}, {"Type'", g_max_prec},
{"|", 0}, {"!", 0}, {"with", 0}, {"...", 0}, {",", 0}, {".", 0}, {":", 0}, {"calc", 0}, {":=", 0}, {"--", 0}, {"#", 0}, {"|", 0}, {"!", 0}, {"with", 0}, {"...", 0}, {",", 0}, {".", 0}, {":", 0}, {"calc", 0}, {":=", 0}, {"--", 0}, {"#", 0},

7
tests/lean/run/elim.lean Normal file
View file

@ -0,0 +1,7 @@
import standard
using num
variable p : num → num → num → Bool
axiom H1 : ∃ x y z, p x y z
axiom H2 : ∀ {x y z : num}, p x y z → p x x x
theorem tst : ∃ x, p x x x
:= obtains a b c H, from H1, exists_intro a (H2 H)