feat(library): assign priorities to notation declarations in the standard library
Now, even if the user opens the namespaces in the "wrong" order, the notation + coercions will behave as expected.
This commit is contained in:
parent
cabe30ba71
commit
cf574d0127
17 changed files with 90 additions and 174 deletions
|
@ -26,7 +26,7 @@ section division_ring
|
||||||
include s
|
include s
|
||||||
|
|
||||||
definition divide (a b : A) : A := a * b⁻¹
|
definition divide (a b : A) : A := a * b⁻¹
|
||||||
infix `/` := divide
|
infix [priority algebra.prio] `/` := divide
|
||||||
|
|
||||||
-- only in this file
|
-- only in this file
|
||||||
local attribute divide [reducible]
|
local attribute divide [reducible]
|
||||||
|
|
|
@ -7,7 +7,7 @@ Various multiplicative and additive structures. Partially modeled on Isabelle's
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import logic.eq data.unit data.sigma data.prod
|
import logic.eq data.unit data.sigma data.prod
|
||||||
import algebra.function algebra.binary
|
import algebra.function algebra.binary algebra.priority
|
||||||
|
|
||||||
open eq eq.ops -- note: ⁻¹ will be overloaded
|
open eq eq.ops -- note: ⁻¹ will be overloaded
|
||||||
open binary
|
open binary
|
||||||
|
@ -36,10 +36,10 @@ structure has_inv [class] (A : Type) :=
|
||||||
structure has_neg [class] (A : Type) :=
|
structure has_neg [class] (A : Type) :=
|
||||||
(neg : A → A)
|
(neg : A → A)
|
||||||
|
|
||||||
infixl `*` := has_mul.mul
|
infixl [priority algebra.prio] `*` := has_mul.mul
|
||||||
infixl `+` := has_add.add
|
infixl [priority algebra.prio] `+` := has_add.add
|
||||||
postfix `⁻¹` := has_inv.inv
|
postfix [priority algebra.prio] `⁻¹` := has_inv.inv
|
||||||
prefix `-` := has_neg.neg
|
prefix [priority algebra.prio] `-` := has_neg.neg
|
||||||
notation 1 := !has_one.one
|
notation 1 := !has_one.one
|
||||||
notation 0 := !has_zero.zero
|
notation 0 := !has_zero.zero
|
||||||
|
|
||||||
|
@ -410,7 +410,7 @@ section add_group
|
||||||
-- TODO: derive corresponding facts for div in a field
|
-- TODO: derive corresponding facts for div in a field
|
||||||
definition sub [reducible] (a b : A) : A := a + -b
|
definition sub [reducible] (a b : A) : A := a + -b
|
||||||
|
|
||||||
infix `-` := sub
|
infix [priority algebra.prio] `-` := sub
|
||||||
|
|
||||||
theorem sub_eq_add_neg (a b : A) : a - b = a + -b := rfl
|
theorem sub_eq_add_neg (a b : A) : a - b = a + -b := rfl
|
||||||
|
|
||||||
|
|
|
@ -28,7 +28,7 @@ definition pow (a : A) : ℕ → A
|
||||||
| 0 := 1
|
| 0 := 1
|
||||||
| (n+1) := pow n * a
|
| (n+1) := pow n * a
|
||||||
|
|
||||||
infix `^` := pow
|
infix [priority algebra.prio] `^` := pow
|
||||||
|
|
||||||
theorem pow_zero (a : A) : a^0 = 1 := rfl
|
theorem pow_zero (a : A) : a^0 = 1 := rfl
|
||||||
theorem pow_succ (a : A) (n : ℕ) : a^(succ n) = a^n * a := rfl
|
theorem pow_succ (a : A) (n : ℕ) : a^(succ n) = a^n * a := rfl
|
||||||
|
@ -92,7 +92,7 @@ theorem pow_inv_comm (a : A) : ∀m n, (a⁻¹)^m * a^n = a^n * (a⁻¹)^m
|
||||||
|
|
||||||
end nat
|
end nat
|
||||||
|
|
||||||
open nat int algebra
|
open int
|
||||||
|
|
||||||
definition ipow (a : A) : ℤ → A
|
definition ipow (a : A) : ℤ → A
|
||||||
| (of_nat n) := a^n
|
| (of_nat n) := a^n
|
||||||
|
|
|
@ -5,7 +5,7 @@ Author: Jeremy Avigad
|
||||||
|
|
||||||
Weak orders "≤", strict orders "<", and structures that include both.
|
Weak orders "≤", strict orders "<", and structures that include both.
|
||||||
-/
|
-/
|
||||||
import logic.eq logic.connectives algebra.binary
|
import logic.eq logic.connectives algebra.binary algebra.priority
|
||||||
open eq eq.ops
|
open eq eq.ops
|
||||||
|
|
||||||
namespace algebra
|
namespace algebra
|
||||||
|
@ -20,16 +20,16 @@ structure has_le [class] (A : Type) :=
|
||||||
structure has_lt [class] (A : Type) :=
|
structure has_lt [class] (A : Type) :=
|
||||||
(lt : A → A → Prop)
|
(lt : A → A → Prop)
|
||||||
|
|
||||||
infixl `<=` := has_le.le
|
infixl [priority algebra.prio] `<=` := has_le.le
|
||||||
infixl `≤` := has_le.le
|
infixl [priority algebra.prio] `≤` := has_le.le
|
||||||
infixl `<` := has_lt.lt
|
infixl [priority algebra.prio] `<` := has_lt.lt
|
||||||
|
|
||||||
definition has_le.ge [reducible] {A : Type} [s : has_le A] (a b : A) := b ≤ a
|
definition has_le.ge [reducible] {A : Type} [s : has_le A] (a b : A) := b ≤ a
|
||||||
notation a ≥ b := has_le.ge a b
|
notation [priority algebra.prio] a ≥ b := has_le.ge a b
|
||||||
notation a >= b := has_le.ge a b
|
notation [priority algebra.prio] a >= b := has_le.ge a b
|
||||||
|
|
||||||
definition has_lt.gt [reducible] {A : Type} [s : has_lt A] (a b : A) := b < a
|
definition has_lt.gt [reducible] {A : Type} [s : has_lt A] (a b : A) := b < a
|
||||||
notation a > b := has_lt.gt a b
|
notation [priority algebra.prio] a > b := has_lt.gt a b
|
||||||
|
|
||||||
/- weak orders -/
|
/- weak orders -/
|
||||||
|
|
||||||
|
|
|
@ -73,7 +73,7 @@ section comm_semiring
|
||||||
include s
|
include s
|
||||||
|
|
||||||
definition dvd (a b : A) : Prop := ∃c, b = a * c
|
definition dvd (a b : A) : Prop := ∃c, b = a * c
|
||||||
notation a ∣ b := dvd a b
|
notation [priority algebra.prio] a ∣ b := dvd a b
|
||||||
|
|
||||||
theorem dvd.intro {a b c : A} (H : a * c = b) : a ∣ b :=
|
theorem dvd.intro {a b c : A} (H : a * c = b) : a ∣ b :=
|
||||||
exists.intro _ H⁻¹
|
exists.intro _ H⁻¹
|
||||||
|
|
|
@ -86,10 +86,12 @@ definition mul (a b : ℤ) : ℤ :=
|
||||||
|
|
||||||
/- notation -/
|
/- notation -/
|
||||||
|
|
||||||
|
protected definition prio : num := num.pred std.priority.default
|
||||||
|
|
||||||
notation `-[1+` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
|
notation `-[1+` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
|
||||||
prefix - := int.neg
|
prefix [priority int.prio] - := int.neg
|
||||||
infix + := int.add
|
infix [priority int.prio] + := int.add
|
||||||
infix * := int.mul
|
infix [priority int.prio] * := int.mul
|
||||||
|
|
||||||
/- some basic functions and properties -/
|
/- some basic functions and properties -/
|
||||||
|
|
||||||
|
@ -627,9 +629,9 @@ section migrate_algebra
|
||||||
|
|
||||||
local attribute int.integral_domain [instance]
|
local attribute int.integral_domain [instance]
|
||||||
definition sub (a b : ℤ) : ℤ := algebra.sub a b
|
definition sub (a b : ℤ) : ℤ := algebra.sub a b
|
||||||
infix - := int.sub
|
infix [priority int.prio] - := int.sub
|
||||||
definition dvd (a b : ℤ) : Prop := algebra.dvd a b
|
definition dvd (a b : ℤ) : Prop := algebra.dvd a b
|
||||||
notation a ∣ b := dvd a b
|
notation [priority int.prio] a ∣ b := dvd a b
|
||||||
|
|
||||||
migrate from algebra with int
|
migrate from algebra with int
|
||||||
replacing sub → sub, dvd → dvd
|
replacing sub → sub, dvd → dvd
|
||||||
|
|
|
@ -23,11 +23,11 @@ sign b *
|
||||||
| of_nat m := #nat m div (nat_abs b)
|
| of_nat m := #nat m div (nat_abs b)
|
||||||
| -[1+m] := -[1+ (#nat m div (nat_abs b))]
|
| -[1+m] := -[1+ (#nat m div (nat_abs b))]
|
||||||
end)
|
end)
|
||||||
notation a div b := divide a b
|
notation [priority int.prio] a div b := divide a b
|
||||||
|
|
||||||
definition modulo (a b : ℤ) : ℤ := a - a div b * b
|
definition modulo (a b : ℤ) : ℤ := a - a div b * b
|
||||||
notation a mod b := modulo a b
|
notation [priority int.prio] a mod b := modulo a b
|
||||||
notation a `≡` b `[mod`:100 c `]`:0 := a mod c = b mod c
|
notation [priority int.prio] a `≡` b `[mod`:100 c `]`:0 := a mod c = b mod c
|
||||||
|
|
||||||
/- div -/
|
/- div -/
|
||||||
|
|
||||||
|
|
|
@ -18,10 +18,10 @@ private definition nonneg (a : ℤ) : Prop := int.cases_on a (take n, true) (tak
|
||||||
definition le (a b : ℤ) : Prop := nonneg (sub b a)
|
definition le (a b : ℤ) : Prop := nonneg (sub b a)
|
||||||
definition lt (a b : ℤ) : Prop := le (add a 1) b
|
definition lt (a b : ℤ) : Prop := le (add a 1) b
|
||||||
|
|
||||||
infix - := int.sub
|
infix [priority int.prio] - := int.sub
|
||||||
infix <= := int.le
|
infix [priority int.prio] <= := int.le
|
||||||
infix ≤ := int.le
|
infix [priority int.prio] ≤ := int.le
|
||||||
infix < := int.lt
|
infix [priority int.prio] < := int.lt
|
||||||
|
|
||||||
local attribute nonneg [reducible]
|
local attribute nonneg [reducible]
|
||||||
private definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := int.cases_on a _ _
|
private definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := int.cases_on a _ _
|
||||||
|
|
|
@ -17,7 +17,7 @@ section migrate_algebra
|
||||||
local attribute int.decidable_linear_ordered_comm_ring [instance]
|
local attribute int.decidable_linear_ordered_comm_ring [instance]
|
||||||
|
|
||||||
definition pow (a : ℤ) (n : ℕ) : ℤ := algebra.pow a n
|
definition pow (a : ℤ) (n : ℕ) : ℤ := algebra.pow a n
|
||||||
infix ^ := pow
|
infix [priority int.prio] ^ := pow
|
||||||
|
|
||||||
migrate from algebra with int
|
migrate from algebra with int
|
||||||
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow
|
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow
|
||||||
|
|
|
@ -371,14 +371,16 @@ definition denom (a : ℚ) : ℤ := prerat.denom (reduce a)
|
||||||
theorem denom_pos (a : ℚ): denom a > 0 :=
|
theorem denom_pos (a : ℚ): denom a > 0 :=
|
||||||
prerat.denom_pos (reduce a)
|
prerat.denom_pos (reduce a)
|
||||||
|
|
||||||
infix + := rat.add
|
protected definition prio := num.pred int.prio
|
||||||
infix * := rat.mul
|
|
||||||
prefix - := rat.neg
|
infix [priority rat.prio] + := rat.add
|
||||||
|
infix [priority rat.prio] * := rat.mul
|
||||||
|
prefix [priority rat.prio] - := rat.neg
|
||||||
|
|
||||||
definition sub [reducible] (a b : rat) : rat := a + (-b)
|
definition sub [reducible] (a b : rat) : rat := a + (-b)
|
||||||
|
|
||||||
postfix ⁻¹ := rat.inv
|
postfix [priority rat.prio] ⁻¹ := rat.inv
|
||||||
infix - := rat.sub
|
infix [priority rat.prio] - := rat.sub
|
||||||
|
|
||||||
/- properties -/
|
/- properties -/
|
||||||
|
|
||||||
|
|
|
@ -146,12 +146,12 @@ definition le (a b : ℚ) : Prop := nonneg (b - a)
|
||||||
definition gt [reducible] (a b : ℚ) := lt b a
|
definition gt [reducible] (a b : ℚ) := lt b a
|
||||||
definition ge [reducible] (a b : ℚ) := le b a
|
definition ge [reducible] (a b : ℚ) := le b a
|
||||||
|
|
||||||
infix < := rat.lt
|
infix [priority rat.prio] < := rat.lt
|
||||||
infix <= := rat.le
|
infix [priority rat.prio] <= := rat.le
|
||||||
infix ≤ := rat.le
|
infix [priority rat.prio] ≤ := rat.le
|
||||||
infix >= := rat.ge
|
infix [priority rat.prio] >= := rat.ge
|
||||||
infix ≥ := rat.ge
|
infix [priority rat.prio] ≥ := rat.ge
|
||||||
infix > := rat.gt
|
infix [priority rat.prio] > := rat.gt
|
||||||
|
|
||||||
theorem of_int_lt_of_int (a b : ℤ) : of_int a < of_int b ↔ (#int a < b) :=
|
theorem of_int_lt_of_int (a b : ℤ) : of_int a < of_int b ↔ (#int a < b) :=
|
||||||
iff.symm (calc
|
iff.symm (calc
|
||||||
|
|
|
@ -1003,18 +1003,19 @@ definition add (x y : ℝ) : ℝ :=
|
||||||
(quot.lift_on₂ x y (λ a b, quot.mk (a + b))
|
(quot.lift_on₂ x y (λ a b, quot.mk (a + b))
|
||||||
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
|
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
|
||||||
quot.sound (radd_well_defined Hab Hcd)))
|
quot.sound (radd_well_defined Hab Hcd)))
|
||||||
infix `+` := add
|
protected definition prio := num.pred rat.prio
|
||||||
|
infix [priority real.prio] `+` := add
|
||||||
|
|
||||||
definition mul (x y : ℝ) : ℝ :=
|
definition mul (x y : ℝ) : ℝ :=
|
||||||
(quot.lift_on₂ x y (λ a b, quot.mk (a * b))
|
(quot.lift_on₂ x y (λ a b, quot.mk (a * b))
|
||||||
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
|
(take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d,
|
||||||
quot.sound (rmul_well_defined Hab Hcd)))
|
quot.sound (rmul_well_defined Hab Hcd)))
|
||||||
infix `*` := mul
|
infix [priority real.prio] `*` := mul
|
||||||
|
|
||||||
definition neg (x : ℝ) : ℝ :=
|
definition neg (x : ℝ) : ℝ :=
|
||||||
(quot.lift_on x (λ a, quot.mk (-a)) (take a b : reg_seq, take Hab : requiv a b,
|
(quot.lift_on x (λ a, quot.mk (-a)) (take a b : reg_seq, take Hab : requiv a b,
|
||||||
quot.sound (rneg_well_defined Hab)))
|
quot.sound (rneg_well_defined Hab)))
|
||||||
prefix `-` := neg
|
prefix [priority real.prio] `-` := neg
|
||||||
|
|
||||||
definition zero : ℝ := quot.mk r_zero
|
definition zero : ℝ := quot.mk r_zero
|
||||||
--notation 0 := zero
|
--notation 0 := zero
|
||||||
|
|
|
@ -610,7 +610,7 @@ open [classes] s
|
||||||
|
|
||||||
definition inv (x : ℝ) : ℝ := quot.lift_on x (λ a, quot.mk (s.r_inv a))
|
definition inv (x : ℝ) : ℝ := quot.lift_on x (λ a, quot.mk (s.r_inv a))
|
||||||
(λ a b H, quot.sound (s.r_inv_well_defined H))
|
(λ a b H, quot.sound (s.r_inv_well_defined H))
|
||||||
postfix `⁻¹` := inv
|
postfix [priority real.prio] `⁻¹` := inv
|
||||||
|
|
||||||
theorem le_total (x y : ℝ) : x ≤ y ∨ y ≤ x :=
|
theorem le_total (x y : ℝ) : x ≤ y ∨ y ≤ x :=
|
||||||
quot.induction_on₂ x y (λ s t, s.r_le_total s t)
|
quot.induction_on₂ x y (λ s t, s.r_le_total s t)
|
||||||
|
|
|
@ -1018,18 +1018,18 @@ open [classes] s
|
||||||
namespace real
|
namespace real
|
||||||
|
|
||||||
definition lt (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_lt a b) s.r_lt_well_defined
|
definition lt (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_lt a b) s.r_lt_well_defined
|
||||||
infix `<` := lt
|
infix [priority real.prio] `<` := lt
|
||||||
|
|
||||||
definition le (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_le a b) s.r_le_well_defined
|
definition le (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_le a b) s.r_le_well_defined
|
||||||
infix `≤` := le
|
infix [priority real.prio] `≤` := le
|
||||||
infix `<=` := le
|
infix [priority real.prio] `<=` := le
|
||||||
|
|
||||||
definition gt [reducible] (a b : ℝ) := lt b a
|
definition gt [reducible] (a b : ℝ) := lt b a
|
||||||
definition ge [reducible] (a b : ℝ) := le b a
|
definition ge [reducible] (a b : ℝ) := le b a
|
||||||
|
|
||||||
infix >= := real.ge
|
infix [priority real.prio] >= := real.ge
|
||||||
infix ≥ := real.ge
|
infix [priority real.prio] ≥ := real.ge
|
||||||
infix > := real.gt
|
infix [priority real.prio] > := real.gt
|
||||||
|
|
||||||
definition sep (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_sep a b) s.r_sep_well_defined
|
definition sep (x y : ℝ) := quot.lift_on₂ x y (λ a b, s.r_sep a b) s.r_sep_well_defined
|
||||||
infix `≢` : 50 := sep
|
infix `≢` : 50 := sep
|
||||||
|
@ -1114,9 +1114,9 @@ section migrate_algebra
|
||||||
local attribute real.ordered_ring [instance]
|
local attribute real.ordered_ring [instance]
|
||||||
|
|
||||||
definition sub (a b : ℝ) : ℝ := algebra.sub a b
|
definition sub (a b : ℝ) : ℝ := algebra.sub a b
|
||||||
infix - := real.sub
|
infix [priority real.prio] - := real.sub
|
||||||
definition dvd (a b : ℝ) : Prop := algebra.dvd a b
|
definition dvd (a b : ℝ) : Prop := algebra.dvd a b
|
||||||
notation a ∣ b := real.dvd a b
|
notation [priority real.prio] a ∣ b := real.dvd a b
|
||||||
|
|
||||||
migrate from algebra with real
|
migrate from algebra with real
|
||||||
replacing has_le.ge → ge, has_lt.gt → gt, sub → sub, dvd → dvd, divide → divide
|
replacing has_le.ge → ge, has_lt.gt → gt, sub → sub, dvd → dvd, divide → divide
|
||||||
|
|
26
tests/lean/notation_priority.lean
Normal file
26
tests/lean/notation_priority.lean
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
import data.real
|
||||||
|
|
||||||
|
open real int nat
|
||||||
|
|
||||||
|
variables a b : nat
|
||||||
|
variables i j : int
|
||||||
|
|
||||||
|
set_option pp.all true
|
||||||
|
check a + b
|
||||||
|
check i + j
|
||||||
|
|
||||||
|
example : a + b = nat.add a b :=
|
||||||
|
rfl
|
||||||
|
example : i + j = int.add i j :=
|
||||||
|
rfl
|
||||||
|
|
||||||
|
open nat real int
|
||||||
|
|
||||||
|
example : a + b = nat.add a b :=
|
||||||
|
rfl
|
||||||
|
example : i + j = int.add i j :=
|
||||||
|
rfl
|
||||||
|
|
||||||
|
set_option pp.all true
|
||||||
|
check a + b
|
||||||
|
check i + j
|
4
tests/lean/notation_priority.lean.expected.out
Normal file
4
tests/lean/notation_priority.lean.expected.out
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
nat.add a b : nat
|
||||||
|
int.add i j : int
|
||||||
|
nat.add a b : nat
|
||||||
|
int.add i j : int
|
|
@ -1,119 +0,0 @@
|
||||||
function display_parse_table(t)
|
|
||||||
t:for_each(function(ts, es)
|
|
||||||
if not t:is_nud() then
|
|
||||||
io.write("_ ")
|
|
||||||
end
|
|
||||||
for i = 1, #ts do
|
|
||||||
io.write("'" .. tostring(ts[i][1]) .. "'")
|
|
||||||
local a = ts[i][2]
|
|
||||||
local k = a:kind()
|
|
||||||
if k == notation_action_kind.Skip then
|
|
||||||
elseif k == notation_action_kind.Binder then
|
|
||||||
io.write(" binder")
|
|
||||||
elseif k == notation_action_kind.Binders then
|
|
||||||
io.write(" binders")
|
|
||||||
elseif k == notation_action_kind.Ext then
|
|
||||||
io.write(" external")
|
|
||||||
elseif k == notation_action_kind.ScopedExpr then
|
|
||||||
io.write(" [_@" .. tostring(a:rbp()) .. ":" .. tostring(a:rec()) .. "]")
|
|
||||||
elseif k == notation_action_kind.Expr then
|
|
||||||
if a:rbp() == 0 then
|
|
||||||
io.write(" _")
|
|
||||||
else
|
|
||||||
io.write(" _@" .. tostring(a:rbp()))
|
|
||||||
end
|
|
||||||
elseif k == notation_action_kind.Exprs then
|
|
||||||
io.write(" [" .. tostring(a:rbp()) .. ", " .. tostring(a:rec()) .. ", " .. tostring(a:ini()) .. ", " .. tostring(a:is_fold_right()) .. "]")
|
|
||||||
end
|
|
||||||
io.write(" ")
|
|
||||||
end
|
|
||||||
print(":= ")
|
|
||||||
while (not es:is_nil()) do
|
|
||||||
print(" " .. tostring(es:head()))
|
|
||||||
es = es:tail()
|
|
||||||
end
|
|
||||||
end)
|
|
||||||
end
|
|
||||||
|
|
||||||
function parse_table_size(t)
|
|
||||||
local r = 0
|
|
||||||
t:for_each(function(ts, es) r = r + #es end)
|
|
||||||
return r
|
|
||||||
end
|
|
||||||
|
|
||||||
local p = parse_table()
|
|
||||||
assert(is_parse_table(p))
|
|
||||||
local ite = Const("ite")
|
|
||||||
local ite2 = Const("ite2")
|
|
||||||
local If = Const("if")
|
|
||||||
p = p:add({"if", "then", "else"}, ite(Var(0), Var(1), Var(2)))
|
|
||||||
p = p:add({"if", "then", "else"}, ite2(Var(0), Var(1), Var(2)))
|
|
||||||
p = p:add({"if", "then"}, If(Var(0), Var(1)))
|
|
||||||
display_parse_table(p)
|
|
||||||
assert(parse_table_size(p) == 3)
|
|
||||||
p = p:add({"if", "then", "else"}, ite2(Var(0), Var(1), Var(2)), false)
|
|
||||||
print("======")
|
|
||||||
display_parse_table(p)
|
|
||||||
assert(parse_table_size(p) == 2)
|
|
||||||
local f = Const("f")
|
|
||||||
p = p:add({{"with", Skip}, "value"}, f(Var(0)))
|
|
||||||
local Exists = Const("Exists")
|
|
||||||
local ExistUnique = Const("ExistUnique")
|
|
||||||
p = p:add({{"exists", Binders}, {",", scoped_expr_notation_action(Exists(Var(0)))}}, Var(0))
|
|
||||||
p = p:add({{"exist!", Binder}, {",", scoped_expr_notation_action(ExistUnique(Var(0)))}}, Var(0))
|
|
||||||
print("======")
|
|
||||||
display_parse_table(p)
|
|
||||||
check_error(function() p = p:add({{"with", Skip}, "value"}, f(Var(1))) end)
|
|
||||||
check_error(function()
|
|
||||||
p = p:add({{",", scoped_expr_notation_action(Exists(Var(0)))}}, Var(0))
|
|
||||||
end)
|
|
||||||
local nat_add = Const({"nat", "add"})
|
|
||||||
local int_add = Const({"int", "add"})
|
|
||||||
check_error(function() p = p:add({{"+", 10}}, nat_add(Var(0), Var(1))) end)
|
|
||||||
p = p:add({"if", "then", "else"}, ite(Var(0), Var(1), Var(2)))
|
|
||||||
local a, p2 = p:find("if")
|
|
||||||
assert(is_notation_action(a))
|
|
||||||
assert(a:kind() == notation_action_kind.Expr)
|
|
||||||
assert(a:rbp() == 0)
|
|
||||||
print("======")
|
|
||||||
display_parse_table(p2)
|
|
||||||
assert(parse_table_size(p2) == 3)
|
|
||||||
local _, p2 = p2:find("then")
|
|
||||||
local _, p2 = p2:find("else")
|
|
||||||
print("======")
|
|
||||||
assert(parse_table_size(p2) == 2)
|
|
||||||
display_parse_table(p2)
|
|
||||||
local es = p2:is_accepting()
|
|
||||||
assert(es)
|
|
||||||
assert(#es == 2)
|
|
||||||
|
|
||||||
local p = parse_table(false) -- Create led table
|
|
||||||
assert(not p:is_nud())
|
|
||||||
p = p:add({{"+", 10}}, nat_add(Var(0), Var(1)))
|
|
||||||
p = p:add({{"+", 10}}, int_add(Var(0), Var(1)))
|
|
||||||
print("======")
|
|
||||||
display_parse_table(p)
|
|
||||||
|
|
||||||
local nat_mul = Const({"nat", "mul"})
|
|
||||||
local int_mul = Const({"int", "mul"})
|
|
||||||
local p2 = parse_table(false) -- Create led table
|
|
||||||
p2 = p2:add({{"*", 20}}, nat_mul(Var(0), Var(1)))
|
|
||||||
p2 = p2:add({{"*", 20}}, int_mul(Var(0), Var(1)))
|
|
||||||
print("======")
|
|
||||||
display_parse_table(p2)
|
|
||||||
|
|
||||||
p = p:merge(p2)
|
|
||||||
print("======")
|
|
||||||
display_parse_table(p)
|
|
||||||
assert(parse_table_size(p) == 4)
|
|
||||||
|
|
||||||
local p3 = parse_table()
|
|
||||||
check_error(function() p:merge(p3) end)
|
|
||||||
|
|
||||||
local a = scoped_expr_notation_action(Var(0), 10)
|
|
||||||
assert(a:use_lambda_abstraction())
|
|
||||||
local a = scoped_expr_notation_action(Var(0), 10, false)
|
|
||||||
assert(not a:use_lambda_abstraction())
|
|
||||||
local a = scoped_expr_notation_action(Var(0), 10, true)
|
|
||||||
assert(a:use_lambda_abstraction())
|
|
||||||
assert(a:rbp() == 10)
|
|
Loading…
Reference in a new issue