fix(library/elaborator): bug in the elaborator

The elaborator was not handling correctly constraints of the form

    ctx |- ?m << (Pi x : A, B)
    and
    ctx |- (Pi x : A, B) << ?m

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-08 12:10:46 -08:00
parent dd6c13abb0
commit cfe576f551
3 changed files with 68 additions and 22 deletions

View file

@ -321,12 +321,8 @@ theorem eq::exists::intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x
:= congr2 (Exists A) (abst H)
theorem not::forall (A : (Type U)) (P : A → Bool) : (¬ (∀ x : A, P x)) == (∃ x : A, ¬ P x)
:= let
l1 : ∀ x : A, P x == ¬ ¬ P x := λ x : A, symm (not::not::eq (P x)),
l2 : (∀ x : A, P x) == (∀ x : A, ¬ ¬ P x) := abstpi l1,
s1 : (¬ ∀ x : A, P x) == (¬ ∀ x : A, ¬ ¬ P x) := not::congr l2,
s2 : (¬ ∀ x : A, ¬ ¬ P x) == (∃ x : A, ¬ P x) := refl (∃ x : A, ¬ P x)
in trans s1 s2
:= calc (¬ ∀ x : A, P x) = (¬ ∀ x : A, ¬ ¬ P x) : not::congr (abstpi (λ x : A, symm (not::not::eq (P x))))
... = (∃ x : A, ¬ P x) : refl (∃ x : A, ¬ P x)
theorem not::forall::elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x
:= (not::forall A P) ◂ H

Binary file not shown.

View file

@ -1307,6 +1307,45 @@ class elaborator::imp {
}
}
/**
\brief Resolve constraints of the form
ctx |- ?m << Pi(x : A, B) (param is_lhs is true)
and
ctx |- Pi(x : A, B) << ?m (param is_lhs is false)
where ?m is not assigned and does not have a local context.
We replace
ctx | ?m << Pi(x : A, B)
with
ctx |- ?m == Pi(x : A, ?m1)
ctx, x : A |- ?m1 << B
*/
void process_metavar_conv_pi(unification_constraint const & c, expr const & m, expr const & pi, bool is_lhs) {
lean_assert(!is_eq(c));
lean_assert(is_metavar(m) && !has_local_context(m));
lean_assert(!is_assigned(m));
lean_assert(is_pi(pi));
lean_assert(is_lhs || is_eqp(convertible_to(c), m));
lean_assert(!is_lhs || is_eqp(convertible_from(c), m));
context ctx = get_context(c);
context new_ctx = extend(ctx, abst_name(pi), abst_domain(pi));
expr m1 = m_state.m_menv->mk_metavar(new_ctx);
justification new_jst(new destruct_justification(c));
// Add ctx, x : A |- ?m1 << B when is_lhs == true,
// and ctx, x : A |- B << ?m1 when is_lhs == false
expr lhs = m1;
expr rhs = abst_body(pi);
if (!is_lhs)
swap(lhs, rhs);
push_new_constraint(false, new_ctx, lhs, rhs, new_jst);
// Add ctx |- ?m == Pi(x : A, ?m1)
push_new_eq_constraint(ctx, m, update_abstraction(pi, abst_domain(pi), m1), new_jst);
}
bool process_eq_convertible(context const & ctx, expr const & a, expr const & b, unification_constraint const & c) {
bool eq = is_eq(c);
if (a == b)
@ -1376,22 +1415,29 @@ class elaborator::imp {
if (!is_meta_app(a) && !is_meta_app(b) && normalize_head(a, b, c)) { return true; }
if (!eq) {
// TODO(Leo): use is_actual_lower and is_actual_upper
// Try to assign convertability constraints.
if (!is_type(b) && !is_meta(b) && is_metavar(a) && !is_assigned(a) && !has_local_context(a)) {
if (is_metavar(a) && !is_assigned(a) && !has_local_context(a)) {
if (is_pi(b)) {
process_metavar_conv_pi(c, a, b, true);
return true;
} else if (!is_type(b) && !is_meta(b)) {
// We can assign a <- b at this point IF b is not (Type lvl) or Metavariable
lean_assert(!has_metavar(b, a));
return assign(a, b, c, true);
}
if (!is_type(a) && !is_meta(a) && a != Bool && is_metavar(b) && !is_assigned(b) && !has_local_context(b)) {
}
if (is_metavar(b) && !is_assigned(b) && !has_local_context(b)) {
if (is_pi(a)) {
process_metavar_conv_pi(c, b, a, false);
return true;
} else if (!is_type(a) && !is_meta(a) && a != Bool) {
// We can assign b <- a at this point IF a is not (Type lvl) or Metavariable or Bool.
lean_assert(!has_metavar(a, b));
return assign(b, a, c, false);
}
}
// TODO(Leo): normalize pi domain... to make sure we are not missing solutions in process_simple_ho_match
}
if (process_simple_ho_match(ctx, a, b, true, c) ||
process_simple_ho_match(ctx, b, a, false, c))
@ -1511,8 +1557,6 @@ class elaborator::imp {
}
if (is_bool(lhs1))
lhs1 = Type();
if (is_bool(lhs2))
lhs2 = Type();
if (is_type(lhs1) && is_type(lhs2)) {
justification new_jst(new normalize_justification(c));
expr new_lhs = mk_type(max(ty_level(lhs1), ty_level(lhs2)));
@ -1526,10 +1570,16 @@ class elaborator::imp {
justification new_jst(new normalize_justification(c));
push_active(mk_convertible_constraint(get_context(c), lhs2, rhs, new_jst));
return true;
} else if (lhs2 == rhs) {
// ctx |- max(lhs1, lhs2) == rhs
} else if (lhs2 == rhs && is_type(lhs2)) {
// ctx |- max(lhs1, lhs2) == rhs IF lhs2 is a Type
// ==> IF lhs1 = rhs
// ctx |- lhs2 << rhs
// Remark: this rule is not applicable when lhs2 == Bool.
// Recall that max is actually a constraint generated for a Pi(x : A, B)
// where lhs1 and lhs2 represent the types of A and B.
// If lhs2 == Bool, the type of Pi(x : A, B) is Bool, and the type
// of A (lhs1) can be as big as we want
justification new_jst(new normalize_justification(c));
push_active(mk_convertible_constraint(get_context(c), lhs1, rhs, new_jst));
return true;