feat(library/theories/number_theory/primes): add Haitao's divisor_of_prime_pow lemma
This commit is contained in:
parent
10b55bd785
commit
d1b5a6be54
1 changed files with 15 additions and 0 deletions
|
@ -177,4 +177,19 @@ lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p
|
||||||
lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) :=
|
lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) :=
|
||||||
λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn))
|
λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn))
|
||||||
|
|
||||||
|
lemma coprime_or_dvd_of_prime {p} (Pp : prime p) (i : nat) : coprime p i ∨ p ∣ i :=
|
||||||
|
by_cases
|
||||||
|
(λ h : p ∣ i, or.inr h)
|
||||||
|
(λ h : ¬ p ∣ i, or.inl (coprime_of_prime_of_not_dvd Pp h))
|
||||||
|
|
||||||
|
lemma divisor_of_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i ∣ (p^m) → i = 1 ∨ p ∣ i
|
||||||
|
| 0 := take i, assume Pp, begin rewrite [pow_zero], intro Pdvd, apply or.inl (eq_one_of_dvd_one Pdvd) end
|
||||||
|
| (succ m) := take i, assume Pp, or.elim (coprime_or_dvd_of_prime Pp i)
|
||||||
|
(λ Pcp, begin
|
||||||
|
rewrite [pow_succ], intro Pdvd,
|
||||||
|
apply divisor_of_prime_pow Pp,
|
||||||
|
apply dvd_of_coprime_of_dvd_mul_right,
|
||||||
|
apply coprime_swap Pcp, exact Pdvd
|
||||||
|
end)
|
||||||
|
(λ Pdvd, assume P, or.inr Pdvd)
|
||||||
end nat
|
end nat
|
||||||
|
|
Loading…
Reference in a new issue