feat(library/theories/number_theory/primes): add Haitao's divisor_of_prime_pow lemma

This commit is contained in:
Leonardo de Moura 2015-07-04 13:27:10 -07:00
parent 10b55bd785
commit d1b5a6be54

View file

@ -177,4 +177,19 @@ lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p
lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) := lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) :=
λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn)) λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn))
lemma coprime_or_dvd_of_prime {p} (Pp : prime p) (i : nat) : coprime p i p i :=
by_cases
(λ h : p i, or.inr h)
(λ h : ¬ p i, or.inl (coprime_of_prime_of_not_dvd Pp h))
lemma divisor_of_prime_pow {p : nat} : ∀ {m i : nat}, prime p → i (p^m) → i = 1 p i
| 0 := take i, assume Pp, begin rewrite [pow_zero], intro Pdvd, apply or.inl (eq_one_of_dvd_one Pdvd) end
| (succ m) := take i, assume Pp, or.elim (coprime_or_dvd_of_prime Pp i)
(λ Pcp, begin
rewrite [pow_succ], intro Pdvd,
apply divisor_of_prime_pow Pp,
apply dvd_of_coprime_of_dvd_mul_right,
apply coprime_swap Pcp, exact Pdvd
end)
(λ Pdvd, assume P, or.inr Pdvd)
end nat end nat