fix(reserved_notation): make is_typeof an abbreviation
This commit is contained in:
parent
5caa983919
commit
d1b98b6919
4 changed files with 4 additions and 3 deletions
|
@ -498,6 +498,7 @@ namespace eq
|
|||
|
||||
-- Transporting in a pulled back fibration.
|
||||
-- TODO: P can probably be implicit
|
||||
-- rename: tr_compose
|
||||
definition transport_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) :
|
||||
transport (P ∘ f) p z = transport P (ap f p) z :=
|
||||
eq.rec_on p idp
|
||||
|
|
|
@ -97,7 +97,7 @@ reserve infixl `++`:65
|
|||
reserve infixr `::`:65
|
||||
|
||||
-- Yet another trick to anotate an expression with a type
|
||||
definition is_typeof (A : Type) (a : A) : A := a
|
||||
abbreviation is_typeof (A : Type) (a : A) : A := a
|
||||
|
||||
notation `typeof` t `:` T := is_typeof T t
|
||||
notation `(` t `:` T `)` := is_typeof T t
|
||||
|
|
|
@ -321,7 +321,7 @@ namespace sigma
|
|||
|
||||
section
|
||||
definition is_equiv_sigma_rec [instance] (C : (Σa, B a) → Type)
|
||||
: is_equiv (@sigma.rec _ _ C) :=
|
||||
: is_equiv (sigma.rec : (Πa b, C ⟨a, b⟩) → Πab, C ab) :=
|
||||
adjointify _ (λ g a b, g ⟨a, b⟩)
|
||||
(λ g, proof eq_of_homotopy (λu, destruct u (λa b, idp)) qed)
|
||||
(λ f, refl f)
|
||||
|
|
|
@ -94,7 +94,7 @@ reserve infixl `++`:65
|
|||
reserve infixr `::`:65
|
||||
|
||||
-- Yet another trick to anotate an expression with a type
|
||||
definition is_typeof (A : Type) (a : A) : A := a
|
||||
abbreviation is_typeof (A : Type) (a : A) : A := a
|
||||
|
||||
notation `typeof` t `:` T := is_typeof T t
|
||||
notation `(` t `:` T `)` := is_typeof T t
|
||||
|
|
Loading…
Reference in a new issue