fix(reserved_notation): make is_typeof an abbreviation

This commit is contained in:
Floris van Doorn 2015-04-09 21:41:23 -04:00 committed by Leonardo de Moura
parent 5caa983919
commit d1b98b6919
4 changed files with 4 additions and 3 deletions

View file

@ -498,6 +498,7 @@ namespace eq
-- Transporting in a pulled back fibration. -- Transporting in a pulled back fibration.
-- TODO: P can probably be implicit -- TODO: P can probably be implicit
-- rename: tr_compose
definition transport_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) : definition transport_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) :
transport (P ∘ f) p z = transport P (ap f p) z := transport (P ∘ f) p z = transport P (ap f p) z :=
eq.rec_on p idp eq.rec_on p idp

View file

@ -97,7 +97,7 @@ reserve infixl `++`:65
reserve infixr `::`:65 reserve infixr `::`:65
-- Yet another trick to anotate an expression with a type -- Yet another trick to anotate an expression with a type
definition is_typeof (A : Type) (a : A) : A := a abbreviation is_typeof (A : Type) (a : A) : A := a
notation `typeof` t `:` T := is_typeof T t notation `typeof` t `:` T := is_typeof T t
notation `(` t `:` T `)` := is_typeof T t notation `(` t `:` T `)` := is_typeof T t

View file

@ -321,7 +321,7 @@ namespace sigma
section section
definition is_equiv_sigma_rec [instance] (C : (Σa, B a) → Type) definition is_equiv_sigma_rec [instance] (C : (Σa, B a) → Type)
: is_equiv (@sigma.rec _ _ C) := : is_equiv (sigma.rec : (Πa b, C ⟨a, b⟩) → Πab, C ab) :=
adjointify _ (λ g a b, g ⟨a, b⟩) adjointify _ (λ g a b, g ⟨a, b⟩)
(λ g, proof eq_of_homotopy (λu, destruct u (λa b, idp)) qed) (λ g, proof eq_of_homotopy (λu, destruct u (λa b, idp)) qed)
(λ f, refl f) (λ f, refl f)

View file

@ -94,7 +94,7 @@ reserve infixl `++`:65
reserve infixr `::`:65 reserve infixr `::`:65
-- Yet another trick to anotate an expression with a type -- Yet another trick to anotate an expression with a type
definition is_typeof (A : Type) (a : A) : A := a abbreviation is_typeof (A : Type) (a : A) : A := a
notation `typeof` t `:` T := is_typeof T t notation `typeof` t `:` T := is_typeof T t
notation `(` t `:` T `)` := is_typeof T t notation `(` t `:` T `)` := is_typeof T t