feat(hott/function): show that a function is embedding iff it has propositional fibers

This commit is contained in:
Floris van Doorn 2015-11-05 12:51:59 -05:00 committed by Leonardo de Moura
parent 5c1bf1e777
commit d402b67d25
6 changed files with 37 additions and 15 deletions

View file

@ -61,6 +61,10 @@ namespace function
: is_equiv (ap f : a = a' → f a = f a') :=
H a a'
definition ap_inv_idp {a : A} {H : is_equiv (ap f : a = a → f a = f a)}
: (ap f)⁻¹ᶠ idp = idp :> a = a :=
!left_inv
variable {f}
definition is_injective_of_is_embedding [reducible] [H : is_embedding f] {a a' : A}
: f a = f a' → a = a' :=
@ -101,6 +105,17 @@ namespace function
{ esimp [is_injective_of_is_embedding], symmetry, apply right_inv}
end
definition is_hprop_fun_of_is_embedding [H : is_embedding f] : is_trunc_fun -1 f :=
is_hprop_fiber_of_is_embedding f
definition is_embedding_of_is_hprop_fun [constructor] [H : is_trunc_fun -1 f] : is_embedding f :=
begin
intro a a', fapply adjointify,
{ intro p, exact ap point (@is_hprop.elim (fiber f (f a')) _ (fiber.mk a p) (fiber.mk a' idp))},
{ intro p, rewrite [-ap_compose], esimp, apply ap_con_eq (@point_eq _ _ f (f a'))},
{ intro p, induction p, apply ap (ap point), apply is_hprop_elim_self}
end
variable {f}
definition is_surjective_rec_on {P : Type} (H : is_surjective f) (b : B) [Pt : is_hprop P]
(IH : fiber f b → P) : P :=

View file

@ -253,10 +253,18 @@ namespace eq
(b : B a) : f b =[apo011 C p !pathover_tr] g (p ▸ b) :=
by cases r; constructor
definition apo10 {f : B a → B' a} {g : B a₂ → B' a₂} (r : f =[p] g)
definition apo10 [unfold 9] {f : B a → B' a} {g : B a₂ → B' a₂} (r : f =[p] g)
(b : B a) : f b =[p] g (p ▸ b) :=
by cases r; constructor
definition apo10_constant_right [unfold 9] {f : B a → A'} {g : B a₂ → A'} (r : f =[p] g)
(b : B a) : f b = g (p ▸ b) :=
by cases r; constructor
definition apo10_constant_left [unfold 9] {f : A' → B a} {g : A' → B a₂} (r : f =[p] g)
(a' : A') : f a' =[p] g a' :=
by cases r; constructor
definition apo11 {f : B a → B' a} {g : B a₂ → B' a₂} (r : f =[p] g)
(q : b =[p] b₂) : f b =[p] g b₂ :=
by induction q; exact apo10 r b

View file

@ -32,19 +32,19 @@ namespace Wtype
end ops
open ops
protected definition eta (w : W a, B a) : ⟨w.1 , w.2⟩ = w :=
protected definition eta [unfold 3] (w : W a, B a) : ⟨w.1 , w.2⟩ = w :=
by cases w; exact idp
definition sup_eq_sup (p : a = a') (q : f =[p] f') : ⟨a, f⟩ = ⟨a', f'⟩ :=
definition sup_eq_sup [unfold 8] (p : a = a') (q : f =[p] f') : ⟨a, f⟩ = ⟨a', f'⟩ :=
by cases q; exact idp
definition Wtype_eq (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : w = w' :=
definition Wtype_eq [unfold 3 4] (p : w.1 = w'.1) (q : w.2 =[p] w'.2) : w = w' :=
by cases w; cases w';exact (sup_eq_sup p q)
definition Wtype_eq_pr1 (p : w = w') : w.1 = w'.1 :=
definition Wtype_eq_pr1 [unfold 5] (p : w = w') : w.1 = w'.1 :=
by cases p;exact idp
definition Wtype_eq_pr2 (p : w = w') : w.2 =[Wtype_eq_pr1 p] w'.2 :=
definition Wtype_eq_pr2 [unfold 5] (p : w = w') : w.2 =[Wtype_eq_pr1 p] w'.2 :=
by cases p;exact idpo
namespace ops
@ -116,7 +116,7 @@ namespace Wtype
/- truncatedness -/
open is_trunc pi
definition trunc_W [instance] (n : trunc_index)
definition is_trunc_W [instance] (n : trunc_index)
[HA : is_trunc (n.+1) A] : is_trunc (n.+1) (W a, B a) :=
begin
fapply is_trunc_succ_intro, intro w w',

View file

@ -84,8 +84,6 @@ namespace is_equiv
apd011 inv p !is_hprop.elim
/- contractible fibers -/
definition is_contr_fun [reducible] (f : A → B) := Π(b : B), is_contr (fiber f b)
definition is_contr_fun_of_is_equiv [H : is_equiv f] : is_contr_fun f :=
is_contr_fiber_of_is_equiv f
@ -115,7 +113,7 @@ namespace is_equiv
definition is_equiv_total_of_is_fiberwise_equiv [H : is_fiberwise_equiv f] : is_equiv (total f) :=
is_equiv_sigma_functor id f
definition is_fiberwise_equiv_of_is_equiv_total [H : is_equiv (sigma_functor id f)]
definition is_fiberwise_equiv_of_is_equiv_total [H : is_equiv (total f)]
: is_fiberwise_equiv f :=
begin
intro a,

View file

@ -66,6 +66,10 @@ namespace fiber
definition pointed_fiber [constructor] (f : A → B) (a : A) : Type* :=
Pointed.mk (fiber.mk a (idpath (f a)))
definition is_trunc_fun [reducible] (n : trunc_index) (f : A → B) :=
Π(b : B), is_trunc n (fiber f b)
definition is_contr_fun [reducible] (f : A → B) := is_trunc_fun -2 f
end fiber
open unit is_trunc
@ -98,11 +102,10 @@ namespace fiber
variables {A : Type} {P Q : A → Type}
variable (f : Πa, P a → Q a)
/- Note that the map on total spaces/sigmas is just sigma_functor id -/
definition fiber_total_equiv {a : A} (q : Q a)
: fiber (sigma_functor id f) ⟨a , q⟩ ≃ fiber (f a) q :=
: fiber (total f) ⟨a , q⟩ ≃ fiber (f a) q :=
calc
fiber (sigma_functor id f) ⟨a , q⟩
fiber (total f) ⟨a , q⟩
≃ Σ(w : Σx, P x), ⟨w.1 , f w.1 w.2 ⟩ = ⟨a , q⟩
: fiber.sigma_char
... ≃ Σ(x : A), Σ(p : P x), ⟨x , f x p⟩ = ⟨a , q⟩

View file

@ -146,9 +146,7 @@ namespace sigma
definition sigma_eq2 {p q : u = v} (r : p..1 = q..1) (s : p..2 =[r] q..2)
: p = q :=
begin
revert q r s,
induction p, induction u with u1 u2,
intro q r s,
transitivity sigma_eq q..1 q..2,
apply sigma_eq_eq_sigma_eq r s,
apply sigma_eq_eta,