fix(library/init/logic): make sure library can be compiled using '--to_axiom' option

This commit is contained in:
Leonardo de Moura 2015-06-16 13:01:24 -07:00
parent b80a391d63
commit d43e0891ae
2 changed files with 3 additions and 3 deletions

View file

@ -77,7 +77,7 @@ namespace vector
theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i
| 0 f i := elim0 i
| (n+1) f (mk 0 h) := rfl
| (n+1) f (mk 0 h) := by reflexivity
| (n+1) f (mk (succ i) h) :=
begin
change nth (f (@zero n) :: tabulate (λ i : fin n, f (succ i))) (mk (succ i) h) = f (mk (succ i) h),
@ -97,7 +97,7 @@ namespace vector
theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i)
| 0 v i := elim0 i
| (succ n) (a :: t) (mk 0 h) := rfl
| (succ n) (a :: t) (mk 0 h) := by reflexivity
| (succ n) (a :: t) (mk (succ i) h) := by rewrite [map_cons, *nth_succ, nth_map]
definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n

View file

@ -34,7 +34,7 @@ assume Hna : ¬a, absurd Ha Hna
/- eq -/
notation a = b := eq a b
theorem rfl {A : Type} {a : A} : a = a := eq.refl a
definition rfl {A : Type} {a : A} : a = a := eq.refl a
-- proof irrelevance is built in
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=