fix(library/init/logic): make sure library can be compiled using '--to_axiom' option
This commit is contained in:
parent
b80a391d63
commit
d43e0891ae
2 changed files with 3 additions and 3 deletions
|
@ -77,7 +77,7 @@ namespace vector
|
|||
|
||||
theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i
|
||||
| 0 f i := elim0 i
|
||||
| (n+1) f (mk 0 h) := rfl
|
||||
| (n+1) f (mk 0 h) := by reflexivity
|
||||
| (n+1) f (mk (succ i) h) :=
|
||||
begin
|
||||
change nth (f (@zero n) :: tabulate (λ i : fin n, f (succ i))) (mk (succ i) h) = f (mk (succ i) h),
|
||||
|
@ -97,7 +97,7 @@ namespace vector
|
|||
|
||||
theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i)
|
||||
| 0 v i := elim0 i
|
||||
| (succ n) (a :: t) (mk 0 h) := rfl
|
||||
| (succ n) (a :: t) (mk 0 h) := by reflexivity
|
||||
| (succ n) (a :: t) (mk (succ i) h) := by rewrite [map_cons, *nth_succ, nth_map]
|
||||
|
||||
definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n
|
||||
|
|
|
@ -34,7 +34,7 @@ assume Hna : ¬a, absurd Ha Hna
|
|||
/- eq -/
|
||||
|
||||
notation a = b := eq a b
|
||||
theorem rfl {A : Type} {a : A} : a = a := eq.refl a
|
||||
definition rfl {A : Type} {a : A} : a = a := eq.refl a
|
||||
|
||||
-- proof irrelevance is built in
|
||||
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
|
||||
|
|
Loading…
Reference in a new issue