fix(library/data/{finset,set}/basic: change notation from {[a, b, c]} to '{a, b, c}

This commit is contained in:
Jeremy Avigad 2015-07-11 12:01:48 +10:00 committed by Leonardo de Moura
parent e8ad284ead
commit d443b25dee
2 changed files with 5 additions and 5 deletions

View file

@ -160,7 +160,7 @@ quot.lift_on s
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p)) (λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
-- set builder notation -- set builder notation
notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a
-- notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a -- notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s := theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
@ -184,7 +184,7 @@ propext (iff.intro
(assume H' : x = a, eq.subst (eq.symm H') !mem_insert) (assume H' : x = a, eq.subst (eq.symm H') !mem_insert)
(assume H' : x ∈ s, !mem_insert_of_mem H'))) (assume H' : x ∈ s, !mem_insert_of_mem H')))
theorem insert_empty_eq (a : A) : {[ a ]} = singleton a := rfl theorem insert_empty_eq (a : A) : '{a} = singleton a := rfl
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s := theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
ext ext
@ -384,7 +384,7 @@ ext (take x,
x ∈ insert a s ↔ x ∈ insert a s : iff.refl x ∈ insert a s ↔ x ∈ insert a s : iff.refl
... = (x = a x ∈ s) : mem_insert_eq ... = (x = a x ∈ s) : mem_insert_eq
... = (x ∈ singleton a x ∈ s) : mem_singleton_eq ... = (x ∈ singleton a x ∈ s) : mem_singleton_eq
... = (x ∈ {[ a ]} s) : mem_union_eq) ... = (x ∈ '{a} s) : mem_union_eq)
theorem insert_union (a : A) (s t : finset A) : insert a (s t) = insert a s t := theorem insert_union (a : A) (s t : finset A) : insert a (s t) = insert a s t :=
by rewrite [*insert_eq, union.assoc] by rewrite [*insert_eq, union.assoc]

View file

@ -148,9 +148,9 @@ notation `{` binders `|` r:(scoped:1 P, set_of P) `}` := r
definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
-- {[x, y, z]} -- '{x, y, z}
definition insert (x : X) (a : set X) : set X := {y : X | y = x y ∈ a} definition insert (x : X) (a : set X) : set X := {y : X | y = x y ∈ a}
notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a
/- set difference -/ /- set difference -/