fix(library/data/{finset,set}/basic: change notation from {[a, b, c]} to '{a, b, c}
This commit is contained in:
parent
e8ad284ead
commit
d443b25dee
2 changed files with 5 additions and 5 deletions
|
@ -160,7 +160,7 @@ quot.lift_on s
|
||||||
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
|
(λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p))
|
||||||
|
|
||||||
-- set builder notation
|
-- set builder notation
|
||||||
notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a
|
notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a
|
||||||
-- notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a
|
-- notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a
|
||||||
|
|
||||||
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
|
theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s :=
|
||||||
|
@ -184,7 +184,7 @@ propext (iff.intro
|
||||||
(assume H' : x = a, eq.subst (eq.symm H') !mem_insert)
|
(assume H' : x = a, eq.subst (eq.symm H') !mem_insert)
|
||||||
(assume H' : x ∈ s, !mem_insert_of_mem H')))
|
(assume H' : x ∈ s, !mem_insert_of_mem H')))
|
||||||
|
|
||||||
theorem insert_empty_eq (a : A) : {[ a ]} = singleton a := rfl
|
theorem insert_empty_eq (a : A) : '{a} = singleton a := rfl
|
||||||
|
|
||||||
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
|
theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s :=
|
||||||
ext
|
ext
|
||||||
|
@ -384,7 +384,7 @@ ext (take x,
|
||||||
x ∈ insert a s ↔ x ∈ insert a s : iff.refl
|
x ∈ insert a s ↔ x ∈ insert a s : iff.refl
|
||||||
... = (x = a ∨ x ∈ s) : mem_insert_eq
|
... = (x = a ∨ x ∈ s) : mem_insert_eq
|
||||||
... = (x ∈ singleton a ∨ x ∈ s) : mem_singleton_eq
|
... = (x ∈ singleton a ∨ x ∈ s) : mem_singleton_eq
|
||||||
... = (x ∈ {[ a ]} ∪ s) : mem_union_eq)
|
... = (x ∈ '{a} ∪ s) : mem_union_eq)
|
||||||
|
|
||||||
theorem insert_union (a : A) (s t : finset A) : insert a (s ∪ t) = insert a s ∪ t :=
|
theorem insert_union (a : A) (s t : finset A) : insert a (s ∪ t) = insert a s ∪ t :=
|
||||||
by rewrite [*insert_eq, union.assoc]
|
by rewrite [*insert_eq, union.assoc]
|
||||||
|
|
|
@ -148,9 +148,9 @@ notation `{` binders `|` r:(scoped:1 P, set_of P) `}` := r
|
||||||
definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
|
definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
|
||||||
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
|
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
|
||||||
|
|
||||||
-- {[x, y, z]}
|
-- '{x, y, z}
|
||||||
definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a}
|
definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a}
|
||||||
notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a
|
notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a
|
||||||
|
|
||||||
/- set difference -/
|
/- set difference -/
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue