diff --git a/library/data/int/basic.lean b/library/data/int/basic.lean index 595e98827..4a058d7d3 100644 --- a/library/data/int/basic.lean +++ b/library/data/int/basic.lean @@ -326,7 +326,7 @@ or.elim (cases_of_nat_succ a) /- addition -/ -definition padd (p q : ℕ × ℕ) : ℕ × ℕ := map_pair2 nat.add p q +definition padd (p q : ℕ × ℕ) : ℕ × ℕ := (pr1 p + pr1 q, pr2 p + pr2 q) theorem repr_add (a b : ℤ) : repr (add a b) ≡ padd (repr a) (repr b) := cases_on a diff --git a/library/data/prod.lean b/library/data/prod.lean index 340bfdc80..2610fc05a 100644 --- a/library/data/prod.lean +++ b/library/data/prod.lean @@ -28,86 +28,4 @@ namespace prod (assume H, H ▸ and.intro rfl rfl) (assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)), decidable_of_decidable_of_iff _ (iff.symm H₃) - - -- ### flip operation - - definition flip (a : A × B) : B × A := pair (pr2 a) (pr1 a) - - theorem flip_def (a : A × B) : flip a = pair (pr2 a) (pr1 a) := rfl - theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl - theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl - theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl - theorem flip_flip (a : A × B) : flip (flip a) = a := - destruct a (take x y, rfl) - - theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a)) - : P (pr2 (flip a)) (pr1 (flip a)) := - (flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H - - theorem flip_inj {a b : A × B} (H : flip a = flip b) : a = b := - have H2 : flip (flip a) = flip (flip b), from congr_arg flip H, - show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2 - - -- ### coordinatewise unary maps - - definition map_pair (f : A → B) (a : A × A) : B × B := - pair (f (pr1 a)) (f (pr2 a)) - - theorem map_pair_def (f : A → B) (a : A × A) - : map_pair f a = pair (f (pr1 a)) (f (pr2 a)) := - rfl - - theorem map_pair_pair (f : A → B) (a a' : A) - : map_pair f (pair a a') = pair (f a) (f a') := - (pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl - - theorem map_pair_pr1 (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) := - !pr1.mk - - theorem map_pair_pr2 (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) := - !pr2.mk - - -- ### coordinatewise binary maps - - definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C := - pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) - - theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : - map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl - - theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) : - map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') := - calc - map_pair2 f (pair a a') (pair b b') - = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b'))) - : {pr1.mk b b'} - ... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'} - ... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'} - ... = pair (f a b) (f a' b') : {pr1.mk a a'} - - theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : - pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk - - theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : - pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk - - theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : - flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) := - have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from - calc - pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _ - ... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b - ... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹} - ... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹} - ... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹, - have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from - calc - pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _ - ... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b - ... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a} - ... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b} - ... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹, - pair_eq Hx Hy - - end prod diff --git a/library/data/quotient/util.lean b/library/data/quotient/util.lean index dbf8701e5..f2d6ef3d6 100644 --- a/library/data/quotient/util.lean +++ b/library/data/quotient/util.lean @@ -1,6 +1,10 @@ --- Copyright (c) 2014 Floris van Doorn. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Floris van Doorn +/- +Copyright (c) 2014 Floris van Doorn. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. + +Module: data.quotient.util +Author: Floris van Doorn +-/ import logic ..prod algebra.relation import tools.fake_simplifier @@ -10,8 +14,89 @@ open fake_simplifier namespace quotient --- auxliary facts about products --- ----------------------------- +/- auxiliary facts about products -/ + + variables {A B : Type} + + /- flip -/ + + definition flip (a : A × B) : B × A := pair (pr2 a) (pr1 a) + + theorem flip_def (a : A × B) : flip a = pair (pr2 a) (pr1 a) := rfl + theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl + theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl + theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl + theorem flip_flip (a : A × B) : flip (flip a) = a := + destruct a (take x y, rfl) + + theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a)) + : P (pr2 (flip a)) (pr1 (flip a)) := + (flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H + + theorem flip_inj {a b : A × B} (H : flip a = flip b) : a = b := + have H2 : flip (flip a) = flip (flip b), from congr_arg flip H, + show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2 + + /- coordinatewise unary maps -/ + + definition map_pair (f : A → B) (a : A × A) : B × B := + pair (f (pr1 a)) (f (pr2 a)) + + theorem map_pair_def (f : A → B) (a : A × A) + : map_pair f a = pair (f (pr1 a)) (f (pr2 a)) := + rfl + + theorem map_pair_pair (f : A → B) (a a' : A) + : map_pair f (pair a a') = pair (f a) (f a') := + (pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl + + theorem map_pair_pr1 (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) := + !pr1.mk + + theorem map_pair_pr2 (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) := + !pr2.mk + + /- coordinatewise binary maps -/ + + definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C := + pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) + + theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : + map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl + + theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) : + map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') := + calc + map_pair2 f (pair a a') (pair b b') + = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b'))) + : {pr1.mk b b'} + ... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'} + ... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'} + ... = pair (f a b) (f a' b') : {pr1.mk a a'} + + theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : + pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk + + theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : + pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk + + theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : + flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) := + have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from + calc + pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _ + ... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b + ... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹} + ... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹} + ... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹, + have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from + calc + pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _ + ... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b + ... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a} + ... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b} + ... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹, + pair_eq Hx Hy -- add_rewrite flip_pr1 flip_pr2 flip_pair -- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair