feat(library/elaborator): be 'lazy' when normalizing terms in the elaborator

Unification constraints of the form

         ctx |- ?m[inst:i v] == T

         and

         ctx |- (?m a1 ... an) == T

are delayed by elaborator because the produce case-splits.
On the other hand, the step that puts terms is head-normal form is eagerly applied.
This is a bad idea for constraints like the two above. The elaborator will put T in head normal form
before executing process_meta_app and process_meta_inst. This is just wasted work, and creates
fully unfolded terms for solvers and provers.

The new test demonstrates the problem. In this test, we mark several terms as non-opaque.
Without this commit, the produced goal is a huge term.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-02-06 21:07:26 -08:00
parent ff955f9830
commit d4b08fcf96
4 changed files with 127 additions and 3 deletions

View file

@ -1650,7 +1650,7 @@ class elaborator::imp {
}
}
if (!is_meta_app(a) && !is_meta_app(b) && normalize_head(a, b, c)) { return true; }
if (!is_meta(a) && !is_meta(b) && normalize_head(a, b, c)) { return true; }
if (process_simple_ho_match(ctx, a, b, true, c) ||
process_simple_ho_match(ctx, b, a, false, c))

View file

@ -27,5 +27,4 @@ n :
sum A B,
pred :
(proj1 (subtype::rep n) = optional::none) ≠ (proj2 (subtype::rep n) = optional::none)
⊢ (∃ a : A, n = subtype::abst (tuple (optional::some a), optional::none) (sum::inhabl (inhabited_intro a) B))
(∃ b : B, n = subtype::abst (tuple optional::none, (optional::some b)) (sum::inhabr A (inhabited_intro b)))
⊢ (∃ a : A, n = sum::inl a B) (∃ b : B, n = sum::inr A b)

95
tests/lean/sum3.lean Normal file
View file

@ -0,0 +1,95 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import macros
import pair
import subtype
import optional
using subtype
using optional
-- We are encoding the (sum A B) as a subtype of (optional A) # (optional B), where
-- (proj1 n = none) ≠ (proj2 n = none)
definition sum_pred (A B : (Type U)) := λ p : (optional A) # (optional B), (proj1 p = none) ≠ (proj2 p = none)
definition sum (A B : (Type U)) := subtype ((optional A) # (optional B)) (sum_pred A B)
namespace sum
theorem inl_pred {A : (Type U)} (a : A) (B : (Type U)) : sum_pred A B (pair (some a) none)
:= not_intro
(assume N : (some a = none) = (none = (@none B)),
have eq : some a = none,
from (symm N) ◂ (refl (@none B)),
show false,
from absurd eq (distinct a))
theorem inr_pred (A : (Type U)) {B : (Type U)} (b : B) : sum_pred A B (pair none (some b))
:= not_intro
(assume N : (none = (@none A)) = (some b = none),
have eq : some b = none,
from N ◂ (refl (@none A)),
show false,
from absurd eq (distinct b))
theorem inhabl {A : (Type U)} (H : inhabited A) (B : (Type U)) : inhabited (sum A B)
:= inhabited_elim H (take w : A,
subtype_inhabited (exists_intro (pair (some w) none) (inl_pred w B)))
theorem inhabr (A : (Type U)) {B : (Type U)} (H : inhabited B) : inhabited (sum A B)
:= inhabited_elim H (take w : B,
subtype_inhabited (exists_intro (pair none (some w)) (inr_pred A w)))
definition inl {A : (Type U)} (a : A) (B : (Type U)) : sum A B
:= abst (pair (some a) none) (inhabl (inhabited_intro a) B)
definition inr (A : (Type U)) {B : (Type U)} (b : B) : sum A B
:= abst (pair none (some b)) (inhabr A (inhabited_intro b))
theorem inl_inj {A B : (Type U)} {a1 a2 : A} : inl a1 B = inl a2 B → a1 = a2
:= assume Heq : inl a1 B = inl a2 B,
have eq1 : inl a1 B = abst (pair (some a1) none) (inhabl (inhabited_intro a1) B),
from refl (inl a1 B),
have eq2 : inl a2 B = abst (pair (some a2) none) (inhabl (inhabited_intro a1) B),
from subst (refl (inl a2 B)) (proof_irrel (inhabl (inhabited_intro a2) B) (inhabl (inhabited_intro a1) B)),
have rep_eq : (pair (some a1) none) = (pair (some a2) none),
from abst_inj (inhabl (inhabited_intro a1) B) (inl_pred a1 B) (inl_pred a2 B) (trans (trans (symm eq1) Heq) eq2),
show a1 = a2,
from optional::injectivity
(calc some a1 = proj1 (pair (some a1) (@none B)) : refl (some a1)
... = proj1 (pair (some a2) (@none B)) : pair_inj1 rep_eq
... = some a2 : refl (some a2))
theorem inr_inj {A B : (Type U)} {b1 b2 : B} : inr A b1 = inr A b2 → b1 = b2
:= assume Heq : inr A b1 = inr A b2,
have eq1 : inr A b1 = abst (pair none (some b1)) (inhabr A (inhabited_intro b1)),
from refl (inr A b1),
have eq2 : inr A b2 = abst (pair none (some b2)) (inhabr A (inhabited_intro b1)),
from subst (refl (inr A b2)) (proof_irrel (inhabr A (inhabited_intro b2)) (inhabr A (inhabited_intro b1))),
have rep_eq : (pair none (some b1)) = (pair none (some b2)),
from abst_inj (inhabr A (inhabited_intro b1)) (inr_pred A b1) (inr_pred A b2) (trans (trans (symm eq1) Heq) eq2),
show b1 = b2,
from optional::injectivity
(calc some b1 = proj2 (pair (@none A) (some b1)) : refl (some b1)
... = proj2 (pair (@none A) (some b2)) : pair_inj2 rep_eq
... = some b2 : refl (some b2))
theorem distinct {A B : (Type U)} (a : A) (b : B) : inl a B ≠ inr A b
:= assume N : inl a B = inr A b,
have eq1 : inl a B = abst (pair (some a) none) (inhabl (inhabited_intro a) B),
from refl (inl a B),
have eq2 : inr A b = abst (pair none (some b)) (inhabl (inhabited_intro a) B),
from subst (refl (inr A b)) (proof_irrel (inhabr A (inhabited_intro b)) (inhabl (inhabited_intro a) B)),
have rep_eq : (pair (some a) none) = (pair none (some b)),
from abst_inj (inhabl (inhabited_intro a) B) (inl_pred a B) (inr_pred A b) (trans (trans (symm eq1) N) eq2),
show false,
from absurd (pair_inj1 rep_eq) (optional::distinct a)
set_opaque optional false
set_opaque subtype false
set_opaque optional::some false
set_opaque optional::none false
set_opaque subtype::rep false
set_opaque subtype::abst false
set_opaque optional_pred false
theorem dichotomy {A B : (Type U)} (n : sum A B) : (∃ a, n = inl a B) (∃ b, n = inr A b)
:= let pred : (proj1 (rep n) = none) ≠ (proj2 (rep n) = none) := P_rep n
in _

View file

@ -0,0 +1,30 @@
Set: pp::colors
Set: pp::unicode
Imported 'macros'
Imported 'pair'
Imported 'subtype'
Imported 'optional'
Using: subtype
Using: optional
Defined: sum_pred
Defined: sum
Proved: sum::inl_pred
Proved: sum::inr_pred
Proved: sum::inhabl
Proved: sum::inhabr
Defined: sum::inl
Defined: sum::inr
Proved: sum::inl_inj
Proved: sum::inr_inj
Proved: sum::distinct
sum3.lean:96:0: error: invalid tactic command, unexpected end of file
Proof state:
A :
(Type U),
B :
(Type U),
n :
sum A B,
pred :
(proj1 (subtype::rep n) = optional::none) ≠ (proj2 (subtype::rep n) = optional::none)
⊢ (∃ a : A, n = sum::inl a B) (∃ b : B, n = sum::inr A b)