refactor(algebra/binary): remove unnecessary annotations
This commit is contained in:
parent
768ba1c363
commit
d501295ec1
1 changed files with 18 additions and 18 deletions
|
@ -15,29 +15,29 @@ namespace binary
|
|||
local notation a * b := op₁ a b
|
||||
local notation a ⁻¹ := inv a
|
||||
|
||||
definition commutative [reducible] := Πa b, a * b = b * a
|
||||
definition associative [reducible] := Πa b c, (a * b) * c = a * (b * c)
|
||||
definition left_identity [reducible] := Πa, one * a = a
|
||||
definition right_identity [reducible] := Πa, a * one = a
|
||||
definition left_inverse [reducible] := Πa, a⁻¹ * a = one
|
||||
definition right_inverse [reducible] := Πa, a * a⁻¹ = one
|
||||
definition left_cancelative [reducible] := Πa b c, a * b = a * c → b = c
|
||||
definition right_cancelative [reducible] := Πa b c, a * b = c * b → a = c
|
||||
definition commutative := Πa b, a * b = b * a
|
||||
definition associative := Πa b c, (a * b) * c = a * (b * c)
|
||||
definition left_identity := Πa, one * a = a
|
||||
definition right_identity := Πa, a * one = a
|
||||
definition left_inverse := Πa, a⁻¹ * a = one
|
||||
definition right_inverse := Πa, a * a⁻¹ = one
|
||||
definition left_cancelative := Πa b c, a * b = a * c → b = c
|
||||
definition right_cancelative := Πa b c, a * b = c * b → a = c
|
||||
|
||||
definition inv_op_cancel_left [reducible] := Πa b, a⁻¹ * (a * b) = b
|
||||
definition op_inv_cancel_left [reducible] := Πa b, a * (a⁻¹ * b) = b
|
||||
definition inv_op_cancel_right [reducible] := Πa b, a * b⁻¹ * b = a
|
||||
definition op_inv_cancel_right [reducible] := Πa b, a * b * b⁻¹ = a
|
||||
definition inv_op_cancel_left := Πa b, a⁻¹ * (a * b) = b
|
||||
definition op_inv_cancel_left := Πa b, a * (a⁻¹ * b) = b
|
||||
definition inv_op_cancel_right := Πa b, a * b⁻¹ * b = a
|
||||
definition op_inv_cancel_right := Πa b, a * b * b⁻¹ = a
|
||||
|
||||
variable (op₂ : A → A → A)
|
||||
|
||||
local notation a + b := op₂ a b
|
||||
|
||||
definition left_distributive [reducible] := Πa b c, a * (b + c) = a * b + a * c
|
||||
definition right_distributive [reducible] := Πa b c, (a + b) * c = a * c + b * c
|
||||
definition left_distributive := Πa b c, a * (b + c) = a * b + a * c
|
||||
definition right_distributive := Πa b c, (a + b) * c = a * c + b * c
|
||||
|
||||
definition right_commutative [reducible] {B : Type} (f : B → A → B) := Π b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁
|
||||
definition left_commutative [reducible] {B : Type} (f : A → B → B) := Π a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b)
|
||||
definition right_commutative {B : Type} (f : B → A → B) := Π b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁
|
||||
definition left_commutative {B : Type} (f : A → B → B) := Π a₁ a₂ b, f a₁ (f a₂ b) = f a₂ (f a₁ b)
|
||||
end
|
||||
|
||||
section
|
||||
|
@ -76,11 +76,11 @@ namespace binary
|
|||
... = a*((b*c)*d) : H_assoc
|
||||
end
|
||||
|
||||
definition right_commutative_compose_right [reducible]
|
||||
definition right_commutative_compose_right
|
||||
{A B : Type} (f : A → A → A) (g : B → A) (rcomm : right_commutative f) : right_commutative (compose_right f g) :=
|
||||
λ a b₁ b₂, !rcomm
|
||||
|
||||
definition left_commutative_compose_left [reducible]
|
||||
definition left_commutative_compose_left
|
||||
{A B : Type} (f : A → A → A) (g : B → A) (lcomm : left_commutative f) : left_commutative (compose_left f g) :=
|
||||
λ a b₁ b₂, !lcomm
|
||||
end binary
|
||||
|
|
Loading…
Reference in a new issue