feat(library/data/list/comb): define upto list generator

This commit is contained in:
Leonardo de Moura 2015-04-10 15:32:44 -07:00
parent 9d8b5aa347
commit d59c671054
2 changed files with 75 additions and 11 deletions

View file

@ -101,31 +101,56 @@ theorem foldr_append (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), fol
| b [] l₂ := rfl
| b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append]
definition all (p : A → Prop) (l : list A) : Prop :=
definition all (l : list A) (p : A → Prop) : Prop :=
foldr (λ a r, p a ∧ r) true l
definition any (p : A → Prop) (l : list A) : Prop :=
definition any (l : list A) (p : A → Prop) : Prop :=
foldr (λ a r, p a r) false l
theorem all_nil (p : A → Prop) : all p [] = true
theorem all_nil (p : A → Prop) : all [] p = true
theorem all_cons (p : A → Prop) (a : A) (l : list A) : all p (a::l) = (p a ∧ all p l)
theorem all_cons (p : A → Prop) (a : A) (l : list A) : all (a::l) p = (p a ∧ all l p)
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all p l → p a
theorem all_of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → all l p :=
assume h, by rewrite [all_cons at h]; exact (and.elim_right h)
theorem of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → p a :=
assume h, by rewrite [all_cons at h]; exact (and.elim_left h)
theorem all_cons_of_all {p : A → Prop} {a : A} {l : list A} : p a → all l p → all (a::l) p :=
assume pa alllp, and.intro pa alllp
theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q
| [] h₁ h₂ := trivial
| (a::l) h₁ h₂ :=
have allq : all l q, from all_implies (all_of_all_cons h₁) h₂,
have qa : q a, from h₂ a (of_all_cons h₁),
all_cons_of_all qa allq
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a
| [] h₁ h₂ := absurd h₁ !not_mem_nil
| (b::l) h₁ h₂ :=
or.elim (eq_or_mem_of_mem_cons h₁)
(λ aeqb : a = b,
by rewrite [all_cons at h₂, -aeqb at h₂]; exact (and.elim_left h₂))
(λ ainl : a ∈ l,
have allp : all p l, by rewrite [all_cons at h₂]; exact (and.elim_right h₂),
have allp : all l p, by rewrite [all_cons at h₂]; exact (and.elim_right h₂),
of_mem_of_all ainl allp)
theorem any_nil (p : A → Prop) : any p [] = false
theorem any_nil (p : A → Prop) : any [] p = false
theorem any_cons (p : A → Prop) (a : A) (l : list A) : any p (a::l) = (p a any p l)
theorem any_cons (p : A → Prop) (a : A) (l : list A) : any (a::l) p = (p a any l p)
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all p l)
theorem any_of_mem (p : A → Prop) {a : A} : ∀ {l}, a ∈ l → p a → any l p
| [] i h := absurd i !not_mem_nil
| (b::l) i h :=
or.elim (eq_or_mem_of_mem_cons i)
(λ aeqb : a = b, by rewrite [-aeqb]; exact (or.inl h))
(λ ainl : a ∈ l,
have anyl : any l p, from any_of_mem ainl h,
or.inr anyl)
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all l p)
| [] := decidable_true
| (a :: l) :=
match H a with
@ -134,10 +159,10 @@ definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decida
| inl Hp₂ := inl (and.intro Hp₁ Hp₂)
| inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂)
end
| inr Hn := inr (not_and_of_not_left (all p l) Hn)
| inr Hn := inr (not_and_of_not_left (all l p) Hn)
end
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any p l)
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any l p)
| [] := decidable_false
| (a :: l) :=
match H a with

View file

@ -376,6 +376,45 @@ theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l
by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl]
end nodup
/- upto -/
definition upto : nat → list nat
| 0 := []
| (n+1) := n :: upto n
theorem upto_nil : upto 0 = nil
theorem upto_succ (n : nat) : upto (succ n) = n :: upto n
theorem length_upto : ∀ n, length (upto n) = n
| 0 := rfl
| (succ n) := by rewrite [upto_succ, length_cons, length_upto]
theorem upto_less : ∀ n, all (upto n) (λ i, i < n)
| 0 := trivial
| (succ n) :=
have alln : all (upto n) (λ i, i < n), from upto_less n,
all_cons_of_all (lt.base n) (all_implies alln (λ x h, lt.step h))
theorem nodup_upto : ∀ n, nodup (upto n)
| 0 := nodup_nil
| (n+1) :=
have d : nodup (upto n), from nodup_upto n,
have n : n ∉ upto n, from
assume i : n ∈ upto n, absurd (of_mem_of_all i (upto_less n)) (lt.irrefl n),
nodup_cons n d
theorem lt_of_mem_upto {n i : nat} : i ∈ upto n → i < n :=
assume i, of_mem_of_all i (upto_less n)
theorem mem_upto_succ_of_mem_upto {n i : nat} : i ∈ upto n → i ∈ upto (succ n) :=
assume i, mem_cons_of_mem _ i
theorem mem_upto_of_lt : ∀ {n i : nat}, i < n → i ∈ upto n
| 0 i h := absurd h !not_lt_zero
| (succ n) i h := or.elim (eq_or_lt_of_le h)
(λ ieqn : i = n, by rewrite [ieqn, upto_succ]; exact !mem_cons)
(λ iltn : i < n, mem_upto_succ_of_mem_upto (mem_upto_of_lt iltn))
/- union -/
section union
variable {A : Type}