feat(library/data/list/comb): define upto list generator
This commit is contained in:
parent
9d8b5aa347
commit
d59c671054
2 changed files with 75 additions and 11 deletions
|
@ -101,31 +101,56 @@ theorem foldr_append (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), fol
|
|||
| b [] l₂ := rfl
|
||||
| b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append]
|
||||
|
||||
definition all (p : A → Prop) (l : list A) : Prop :=
|
||||
definition all (l : list A) (p : A → Prop) : Prop :=
|
||||
foldr (λ a r, p a ∧ r) true l
|
||||
|
||||
definition any (p : A → Prop) (l : list A) : Prop :=
|
||||
definition any (l : list A) (p : A → Prop) : Prop :=
|
||||
foldr (λ a r, p a ∨ r) false l
|
||||
|
||||
theorem all_nil (p : A → Prop) : all p [] = true
|
||||
theorem all_nil (p : A → Prop) : all [] p = true
|
||||
|
||||
theorem all_cons (p : A → Prop) (a : A) (l : list A) : all p (a::l) = (p a ∧ all p l)
|
||||
theorem all_cons (p : A → Prop) (a : A) (l : list A) : all (a::l) p = (p a ∧ all l p)
|
||||
|
||||
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all p l → p a
|
||||
theorem all_of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → all l p :=
|
||||
assume h, by rewrite [all_cons at h]; exact (and.elim_right h)
|
||||
|
||||
theorem of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → p a :=
|
||||
assume h, by rewrite [all_cons at h]; exact (and.elim_left h)
|
||||
|
||||
theorem all_cons_of_all {p : A → Prop} {a : A} {l : list A} : p a → all l p → all (a::l) p :=
|
||||
assume pa alllp, and.intro pa alllp
|
||||
|
||||
theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q
|
||||
| [] h₁ h₂ := trivial
|
||||
| (a::l) h₁ h₂ :=
|
||||
have allq : all l q, from all_implies (all_of_all_cons h₁) h₂,
|
||||
have qa : q a, from h₂ a (of_all_cons h₁),
|
||||
all_cons_of_all qa allq
|
||||
|
||||
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a
|
||||
| [] h₁ h₂ := absurd h₁ !not_mem_nil
|
||||
| (b::l) h₁ h₂ :=
|
||||
or.elim (eq_or_mem_of_mem_cons h₁)
|
||||
(λ aeqb : a = b,
|
||||
by rewrite [all_cons at h₂, -aeqb at h₂]; exact (and.elim_left h₂))
|
||||
(λ ainl : a ∈ l,
|
||||
have allp : all p l, by rewrite [all_cons at h₂]; exact (and.elim_right h₂),
|
||||
have allp : all l p, by rewrite [all_cons at h₂]; exact (and.elim_right h₂),
|
||||
of_mem_of_all ainl allp)
|
||||
|
||||
theorem any_nil (p : A → Prop) : any p [] = false
|
||||
theorem any_nil (p : A → Prop) : any [] p = false
|
||||
|
||||
theorem any_cons (p : A → Prop) (a : A) (l : list A) : any p (a::l) = (p a ∨ any p l)
|
||||
theorem any_cons (p : A → Prop) (a : A) (l : list A) : any (a::l) p = (p a ∨ any l p)
|
||||
|
||||
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all p l)
|
||||
theorem any_of_mem (p : A → Prop) {a : A} : ∀ {l}, a ∈ l → p a → any l p
|
||||
| [] i h := absurd i !not_mem_nil
|
||||
| (b::l) i h :=
|
||||
or.elim (eq_or_mem_of_mem_cons i)
|
||||
(λ aeqb : a = b, by rewrite [-aeqb]; exact (or.inl h))
|
||||
(λ ainl : a ∈ l,
|
||||
have anyl : any l p, from any_of_mem ainl h,
|
||||
or.inr anyl)
|
||||
|
||||
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all l p)
|
||||
| [] := decidable_true
|
||||
| (a :: l) :=
|
||||
match H a with
|
||||
|
@ -134,10 +159,10 @@ definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decida
|
|||
| inl Hp₂ := inl (and.intro Hp₁ Hp₂)
|
||||
| inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂)
|
||||
end
|
||||
| inr Hn := inr (not_and_of_not_left (all p l) Hn)
|
||||
| inr Hn := inr (not_and_of_not_left (all l p) Hn)
|
||||
end
|
||||
|
||||
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any p l)
|
||||
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any l p)
|
||||
| [] := decidable_false
|
||||
| (a :: l) :=
|
||||
match H a with
|
||||
|
|
|
@ -376,6 +376,45 @@ theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l
|
|||
by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl]
|
||||
end nodup
|
||||
|
||||
/- upto -/
|
||||
definition upto : nat → list nat
|
||||
| 0 := []
|
||||
| (n+1) := n :: upto n
|
||||
|
||||
theorem upto_nil : upto 0 = nil
|
||||
|
||||
theorem upto_succ (n : nat) : upto (succ n) = n :: upto n
|
||||
|
||||
theorem length_upto : ∀ n, length (upto n) = n
|
||||
| 0 := rfl
|
||||
| (succ n) := by rewrite [upto_succ, length_cons, length_upto]
|
||||
|
||||
theorem upto_less : ∀ n, all (upto n) (λ i, i < n)
|
||||
| 0 := trivial
|
||||
| (succ n) :=
|
||||
have alln : all (upto n) (λ i, i < n), from upto_less n,
|
||||
all_cons_of_all (lt.base n) (all_implies alln (λ x h, lt.step h))
|
||||
|
||||
theorem nodup_upto : ∀ n, nodup (upto n)
|
||||
| 0 := nodup_nil
|
||||
| (n+1) :=
|
||||
have d : nodup (upto n), from nodup_upto n,
|
||||
have n : n ∉ upto n, from
|
||||
assume i : n ∈ upto n, absurd (of_mem_of_all i (upto_less n)) (lt.irrefl n),
|
||||
nodup_cons n d
|
||||
|
||||
theorem lt_of_mem_upto {n i : nat} : i ∈ upto n → i < n :=
|
||||
assume i, of_mem_of_all i (upto_less n)
|
||||
|
||||
theorem mem_upto_succ_of_mem_upto {n i : nat} : i ∈ upto n → i ∈ upto (succ n) :=
|
||||
assume i, mem_cons_of_mem _ i
|
||||
|
||||
theorem mem_upto_of_lt : ∀ {n i : nat}, i < n → i ∈ upto n
|
||||
| 0 i h := absurd h !not_lt_zero
|
||||
| (succ n) i h := or.elim (eq_or_lt_of_le h)
|
||||
(λ ieqn : i = n, by rewrite [ieqn, upto_succ]; exact !mem_cons)
|
||||
(λ iltn : i < n, mem_upto_succ_of_mem_upto (mem_upto_of_lt iltn))
|
||||
|
||||
/- union -/
|
||||
section union
|
||||
variable {A : Type}
|
||||
|
|
Loading…
Reference in a new issue