feat(library/data/real): prove more about embedding Q into R

This commit is contained in:
Rob Lewis 2015-07-27 12:27:38 -04:00
parent a670f21e78
commit d63010b7df
2 changed files with 51 additions and 0 deletions

View file

@ -306,6 +306,12 @@ theorem nonneg_le_nonneg_of_squares_le (Ha : a ≥ 0) (Hb : b ≥ 0) (H : a * a
apply le_mul_of_div_le Hc H apply le_mul_of_div_le Hc H
end end
theorem div_two_lt_of_pos (H : a > 0) : a / (1 + 1) < a :=
have Ha : a / (1 + 1) > 0, from pos_div_of_pos_of_pos H (add_pos zero_lt_one zero_lt_one),
calc
a / (1 + 1) < a / (1 + 1) + a / (1 + 1) : lt_add_of_pos_left Ha
... = a : add_halves
end linear_ordered_field end linear_ordered_field
structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A, structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A,

View file

@ -941,6 +941,39 @@ theorem le_of_const_le_const {a b : } (H : s_le (const a) (const b)) : a ≤
apply nonneg_of_ge_neg_invs _ H apply nonneg_of_ge_neg_invs _ H
end end
theorem nat_inv_lt_rat {a : } (H : a > 0) : ∃ n : +, n⁻¹ < a :=
begin
existsi (pceil (1 / (a / (1 + 1)))),
apply lt_of_le_of_lt,
rotate 1,
apply div_two_lt_of_pos H,
rewrite -(@div_div' (a / (1 + 1))),
apply pceil_helper,
rewrite div_div',
apply pnat.le.refl,
apply div_pos_of_pos,
apply pos_div_of_pos_of_pos H dec_trivial
end
theorem const_lt_const_of_lt {a b : } (H : a < b) : s_lt (const a) (const b) :=
begin
rewrite [↑s_lt, ↑pos, ↑sadd, ↑sneg, ↑const],
apply nat_inv_lt_rat,
apply (iff.mpr !sub_pos_iff_lt H)
end
theorem lt_of_const_lt_const {a b : } (H : s_lt (const a) (const b)) : a < b :=
begin
rewrite [↑s_lt at H, ↑pos at H, ↑const at H, ↑sadd at H, ↑sneg at H],
cases H with [n, Hn],
apply (iff.mp !sub_pos_iff_lt),
apply lt.trans,
rotate 1,
assumption,
apply pnat.inv_pos
end
-------- lift to reg_seqs -------- lift to reg_seqs
definition r_lt (s t : reg_seq) := s_lt (reg_seq.sq s) (reg_seq.sq t) definition r_lt (s t : reg_seq) := s_lt (reg_seq.sq s) (reg_seq.sq t)
definition r_le (s t : reg_seq) := s_le (reg_seq.sq s) (reg_seq.sq t) definition r_le (s t : reg_seq) := s_le (reg_seq.sq s) (reg_seq.sq t)
@ -1022,6 +1055,12 @@ theorem r_const_le_const_of_le {a b : } (H : a ≤ b) : r_le (r_const a) (r_c
theorem r_le_of_const_le_const {a b : } (H : r_le (r_const a) (r_const b)) : a ≤ b := theorem r_le_of_const_le_const {a b : } (H : r_le (r_const a) (r_const b)) : a ≤ b :=
le_of_const_le_const H le_of_const_le_const H
theorem r_const_lt_const_of_lt {a b : } (H : a < b) : r_lt (r_const a) (r_const b) :=
const_lt_const_of_lt H
theorem r_lt_of_const_lt_const {a b : } (H : r_lt (r_const a) (r_const b)) : a < b :=
lt_of_const_lt_const H
end s end s
open real open real
@ -1142,4 +1181,10 @@ theorem of_rat_le_of_rat_of_le (a b : ) : a ≤ b → of_rat a ≤ of_rat b :
theorem le_of_rat_le_of_rat (a b : ) : of_rat a ≤ of_rat b → a ≤ b := theorem le_of_rat_le_of_rat (a b : ) : of_rat a ≤ of_rat b → a ≤ b :=
s.r_le_of_const_le_const s.r_le_of_const_le_const
theorem of_rat_lt_of_rat_of_lt (a b : ) : a < b → of_rat a < of_rat b :=
s.r_const_lt_const_of_lt
theorem lt_of_rat_lt_of_rat (a b : ) : of_rat a < of_rat b → a < b :=
s.r_lt_of_const_lt_const
end real end real