fix(library/logic/heq): heq.to_eq must be transparent because it is needed in the 'inversion' tactic used by definitional package
This commit is contained in:
parent
cab99e2e22
commit
d7042c4618
2 changed files with 6 additions and 8 deletions
|
@ -188,7 +188,7 @@ namespace vector
|
|||
vector.induction_on v
|
||||
rfl
|
||||
(λ h n t ih, calc
|
||||
last (concat (h :: t) a) = last (concat t a) : last_cons
|
||||
last (concat (h :: t) a) = last (concat t a) : rfl
|
||||
... = a : ih)
|
||||
|
||||
end vector
|
||||
|
|
|
@ -19,18 +19,16 @@ namespace heq
|
|||
theorem symm (H : a == b) : b == a :=
|
||||
subst H (refl a)
|
||||
|
||||
theorem type_eq (H : a == b) : A = B :=
|
||||
subst H (eq.refl A)
|
||||
definition type_eq (H : a == b) : A = B :=
|
||||
heq.rec_on H (eq.refl A)
|
||||
|
||||
theorem from_eq (H : a = a') : a == a' :=
|
||||
eq.subst H (refl a)
|
||||
|
||||
theorem to_eq (H : a == a') : a = a' :=
|
||||
definition to_eq (H : a == a') : a = a' :=
|
||||
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
|
||||
take Ht, eq.refl (eq.rec_on Ht a),
|
||||
have H₂ : ∀ (Ht : A = A), eq.rec_on Ht a = a', from
|
||||
heq.rec_on H H₁,
|
||||
H₂ (type_eq H)
|
||||
λ Ht, eq.refl (eq.rec_on Ht a),
|
||||
heq.rec_on H H₁ (eq.refl A)
|
||||
|
||||
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
|
||||
subst H₂ H₁
|
||||
|
|
Loading…
Reference in a new issue