feat(hott): small fixes in hit and cubical.square

This commit is contained in:
Floris van Doorn 2015-05-26 09:56:41 -04:00 committed by Leonardo de Moura
parent 4a29f4bdd4
commit d7c1a8f2e0
5 changed files with 34 additions and 15 deletions

View file

@ -78,7 +78,7 @@ parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
elim_type Pinl Pinr Pglue y
theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) (x : TL)
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL)
: transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn

View file

@ -27,7 +27,7 @@ namespace suspension
protected definition rec {P : suspension A → Type} (PN : P !north) (PS : P !south)
(Pm : Π(a : A), PN =[merid a] PS) (x : suspension A) : P x :=
begin
fapply (pushout.rec_on _ _ x),
fapply pushout.rec_on _ _ x,
{ intro u, cases u, exact PN},
{ intro u, cases u, exact PS},
{ exact Pm},
@ -66,7 +66,7 @@ namespace suspension
suspension.elim_type PN PS Pm x
theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(x : suspension A) (a : A) : transport (suspension.elim_type PN PS Pm) (merid a) = Pm a :=
(a : A) : transport (suspension.elim_type PN PS Pm) (merid a) = Pm a :=
by rewrite [tr_eq_cast_ap_fn,↑suspension.elim_type,elim_merid];apply cast_ua_fn
end suspension

View file

@ -6,7 +6,12 @@ Authors: Floris van Doorn
Type quotients (quotient without truncation)
-/
/- The hit type_quotient is primitive, declared in init.hit. -/
/-
The hit type_quotient is primitive, declared in init.hit.
The constructors are
class_of : A → A / R (A implicit, R explicit)
eq_of_rel : R a a' → a = a' (R explicit)
-/
open eq equiv sigma.ops

View file

@ -7,28 +7,21 @@ Ported from Coq HoTT
Theorems about products
-/
open eq equiv is_equiv is_trunc prod prod.ops
open eq equiv is_equiv is_trunc prod prod.ops unit
variables {A A' B B' C D : Type}
{a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B}
namespace prod
-- prod.eta is already used for the eta rule for strict equality
protected definition eta (u : A × B) : (pr₁ u , pr₂ u) = u :=
protected definition eta (u : A × B) : (pr₁ u, pr₂ u) = u :=
by cases u; apply idp
definition pair_eq (pa : a = a') (pb : b = b') : (a , b) = (a' , b') :=
definition pair_eq (pa : a = a') (pb : b = b') : (a, b) = (a', b') :=
by cases pa; cases pb; apply idp
definition prod_eq (H₁ : pr₁ u = pr₁ v) (H₂ : pr₂ u = pr₂ v) : u = v :=
begin
cases u with a₁ b₁,
cases v with a₂ b₂,
apply transport _ (prod.eta (a₁, b₁)),
apply transport _ (prod.eta (a₂, b₂)),
apply pair_eq H₁ H₂,
end
by cases u; cases v; exact pair_eq H₁ H₂
/- Symmetry -/
@ -41,6 +34,15 @@ namespace prod
definition prod_comm_equiv (A B : Type) : A × B ≃ B × A :=
equiv.mk flip _
definition prod_contr_equiv (A B : Type) [H : is_contr B] : A × B ≃ A :=
equiv.MK pr1
(λx, (x, !center))
(λx, idp)
(λx, by cases x with a b; exact pair_eq idp !center_eq)
definition prod_unit_equiv (A : Type) : A × unit ≃ A :=
!prod_contr_equiv
-- is_trunc_prod is defined in sigma
end prod

View file

@ -64,6 +64,18 @@ namespace cubical
definition square_of_eq (r : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by cases p₁₂; (esimp [concat] at r); cases r; cases p₂₁; cases p₁₀; exact ids
definition aps {B : Type} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (ap f p₁₀) (ap f p₁₂) (ap f p₀₁) (ap f p₂₁) :=
by cases s₁₁;exact ids
definition square_of_homotopy {B : Type} {f g : A → B} (H : f g) (p : a = a')
: square (H a) (H a') (ap f p) (ap g p) :=
by cases p; apply vrefl
definition square_of_homotopy' {B : Type} {f g : A → B} (H : f g) (p : a = a')
: square (ap f p) (ap g p) (H a) (H a') :=
by cases p; apply hrefl
definition square_equiv_eq (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂) (l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂)
: square t b l r ≃ t ⬝ r = l ⬝ b :=
begin