feat(builtin/Nat): add more leq theorems

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-02 22:48:10 -08:00
parent cf35e7bed7
commit d7efdff83d
2 changed files with 49 additions and 1 deletions

View file

@ -30,16 +30,39 @@ Infix 50 > : gt.
Definition id (a : Nat) := a. Definition id (a : Nat) := a.
Notation 55 | _ | : id. Notation 55 | _ | : id.
Axiom SuccNeZero (a : Nat) : a + 1 ≠ 0.
Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b
Axiom PlusZero (a : Nat) : a + 0 = a. Axiom PlusZero (a : Nat) : a + 0 = a.
Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1. Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1.
Axiom MulZero (a : Nat) : a * 0 = 0. Axiom MulZero (a : Nat) : a * 0 = 0.
Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a. Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a.
Axiom LeDef (a b : Nat) : a ≤ b ⇔ ∃ c : Nat, a + c = b. Axiom LeDef (a b : Nat) : a ≤ b ⇔ ∃ c, a + c = b.
Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a. Axiom Induction {P : Nat → Bool} (Hb : P 0) (iH : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a.
Theorem ZeroNeOne : 0 ≠ 1 := Trivial. Theorem ZeroNeOne : 0 ≠ 1 := Trivial.
Theorem NeZeroPred' (a : Nat) : a ≠ 0 ⇒ ∃ b, b + 1 = a
:= Induction (show 0 ≠ 0 ⇒ ∃ b, b + 1 = 0,
assume H : 0 ≠ 0, FalseElim (∃ b, b + 1 = 0) H)
(λ (n : Nat) (iH : n ≠ 0 ⇒ ∃ b, b + 1 = n),
assume H : n + 1 ≠ 0,
DisjCases (EM (n = 0))
(λ Heq0 : n = 0, ExistsIntro 0 (calc 0 + 1 = n + 1 : { Symm Heq0 }))
(λ Hne0 : n ≠ 0,
ExistsElim (MP iH Hne0)
(λ (w : Nat) (Hw : w + 1 = n),
ExistsIntro (w + 1) (calc w + 1 + 1 = n + 1 : { Hw }))))
a.
Theorem NeZeroPred {a : Nat} (H : a ≠ 0) : ∃ b, b + 1 = a
:= MP (NeZeroPred' a) H.
Theorem Destruct {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : Π n, a = n + 1 → B) : B
:= DisjCases (EM (a = 0))
(λ Heq0 : a = 0, H1 Heq0)
(λ Hne0 : a ≠ 0, ExistsElim (NeZeroPred Hne0)
(λ (w : Nat) (Hw : w + 1 = a), H2 w (Symm Hw))).
Theorem ZeroPlus (a : Nat) : 0 + a = a Theorem ZeroPlus (a : Nat) : 0 + a = a
:= Induction (show 0 + 0 = 0, Trivial) := Induction (show 0 + 0 = 0, Trivial)
(λ (n : Nat) (iH : 0 + n = n), (λ (n : Nat) (iH : 0 + n = n),
@ -178,6 +201,16 @@ Theorem PlusInj' (a b c : Nat) : a + b = a + c ⇒ b = c
Theorem PlusInj {a b c : Nat} (H : a + b = a + c) : b = c Theorem PlusInj {a b c : Nat} (H : a + b = a + c) : b = c
:= MP (PlusInj' a b c) H. := MP (PlusInj' a b c) H.
Theorem PlusEq0 {a b : Nat} (H : a + b = 0) : a = 0
:= Destruct (λ H1 : a = 0, H1)
(λ (n : Nat) (H1 : a = n + 1),
AbsurdElim (a = 0)
H (calc a + b = n + 1 + b : { H1 }
... = n + (1 + b) : Symm (PlusAssoc n 1 b)
... = n + (b + 1) : { PlusComm 1 b }
... = n + b + 1 : PlusAssoc n b 1
... ≠ 0 : SuccNeZero (n + b)))
Theorem LeIntro {a b c : Nat} (H : a + c = b) : a ≤ b Theorem LeIntro {a b c : Nat} (H : a + c = b) : a ≤ b
:= EqMP (Symm (LeDef a b)) (show (∃ x, a + x = b), ExistsIntro c H). := EqMP (Symm (LeDef a b)) (show (∃ x, a + x = b), ExistsIntro c H).
@ -205,6 +238,21 @@ Theorem LeInj {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c
... = a + w + c : PlusAssoc a w c ... = a + w + c : PlusAssoc a w c
... = b + c : { Hw })). ... = b + c : { Hw })).
Theorem LeAntiSymm {a b : Nat} (H1 : a ≤ b) (H2 : b ≤ a) : a = b
:= ExistsElim (LeElim H1)
(λ (w1 : Nat) (Hw1 : a + w1 = b),
ExistsElim (LeElim H2)
(λ (w2 : Nat) (Hw2 : b + w2 = a),
let L1 : w1 + w2 = 0
:= PlusInj (calc a + (w1 + w2) = a + w1 + w2 : { PlusAssoc a w1 w2 }
... = b + w2 : { Hw1 }
... = a : Hw2
... = a + 0 : Symm (PlusZero a)),
L2 : w1 = 0 := PlusEq0 L1
in calc a = a + 0 : Symm (PlusZero a)
... = a + w1 : { Symm L2 }
... = b : Hw1)).
SetOpaque ge true. SetOpaque ge true.
SetOpaque lt true. SetOpaque lt true.
SetOpaque gt true. SetOpaque gt true.

Binary file not shown.