Add more theorems
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
d1388f5e3c
commit
d88ff6f8e1
2 changed files with 81 additions and 31 deletions
|
@ -124,9 +124,10 @@ public:
|
||||||
else
|
else
|
||||||
r = args[4]; // if A false a b --> b
|
r = args[4]; // if A false a b --> b
|
||||||
return true;
|
return true;
|
||||||
} if (num_args == 5 && args[3] == args[4]) {
|
// TODO: uncomment the following code.
|
||||||
r = args[3]; // if A c a a --> a
|
// } if (num_args == 5 && args[3] == args[4]) {
|
||||||
return true;
|
// r = args[3]; // if A c a a --> a
|
||||||
|
// return true;
|
||||||
} else {
|
} else {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -147,7 +148,12 @@ MK_CONSTANT(not_fn, name("not"));
|
||||||
MK_CONSTANT(forall_fn, name("forall"));
|
MK_CONSTANT(forall_fn, name("forall"));
|
||||||
MK_CONSTANT(exists_fn, name("exists"));
|
MK_CONSTANT(exists_fn, name("exists"));
|
||||||
|
|
||||||
|
MK_CONSTANT(true_neq_false, name("true_neq_false"));
|
||||||
MK_CONSTANT(refl_fn, name("refl"));
|
MK_CONSTANT(refl_fn, name("refl"));
|
||||||
|
MK_CONSTANT(case_fn, name("case"));
|
||||||
|
MK_CONSTANT(false_elim_fn, name("false_elim"));
|
||||||
|
MK_CONSTANT(em_fn, name("em"));
|
||||||
|
MK_CONSTANT(double_neg_fn, name("double_neg"));
|
||||||
MK_CONSTANT(subst_fn, name("subst"));
|
MK_CONSTANT(subst_fn, name("subst"));
|
||||||
MK_CONSTANT(eta_fn, name("eta"));
|
MK_CONSTANT(eta_fn, name("eta"));
|
||||||
MK_CONSTANT(symm_fn, name("symm"));
|
MK_CONSTANT(symm_fn, name("symm"));
|
||||||
|
@ -160,11 +166,13 @@ MK_CONSTANT(eq_mp_fn, name("eq_mp"));
|
||||||
MK_CONSTANT(truth, name("truth"));
|
MK_CONSTANT(truth, name("truth"));
|
||||||
MK_CONSTANT(eqt_elim_fn, name("eqt_elim"));
|
MK_CONSTANT(eqt_elim_fn, name("eqt_elim"));
|
||||||
MK_CONSTANT(ext_fn, name("ext"));
|
MK_CONSTANT(ext_fn, name("ext"));
|
||||||
MK_CONSTANT(foralle_fn, name("foralle"));
|
MK_CONSTANT(forall_elim_fn, name("forall_elim"));
|
||||||
MK_CONSTANT(foralli_fn, name("foralli"));
|
MK_CONSTANT(foralli_fn, name("foralli"));
|
||||||
MK_CONSTANT(domain_inj_fn, name("domain_inj"));
|
MK_CONSTANT(domain_inj_fn, name("domain_inj"));
|
||||||
MK_CONSTANT(range_inj_fn, name("range_inj"));
|
MK_CONSTANT(range_inj_fn, name("range_inj"));
|
||||||
|
|
||||||
|
expr Case(expr const & P, expr const & H1, expr const & H2, expr const & a) { return mk_app(mk_case_fn(), P, H1, H2, a); }
|
||||||
|
|
||||||
void add_basic_theory(environment & env) {
|
void add_basic_theory(environment & env) {
|
||||||
env.define_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION);
|
env.define_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION);
|
||||||
env.define_uvar(uvar_name(u_lvl), m_lvl + LEAN_DEFAULT_LEVEL_SEPARATION);
|
env.define_uvar(uvar_name(u_lvl), m_lvl + LEAN_DEFAULT_LEVEL_SEPARATION);
|
||||||
|
@ -184,6 +192,7 @@ void add_basic_theory(environment & env) {
|
||||||
expr h = Const("h");
|
expr h = Const("h");
|
||||||
expr x = Const("x");
|
expr x = Const("x");
|
||||||
expr y = Const("y");
|
expr y = Const("y");
|
||||||
|
expr z = Const("z");
|
||||||
expr P = Const("P");
|
expr P = Const("P");
|
||||||
expr A1 = Const("A1");
|
expr A1 = Const("A1");
|
||||||
expr B1 = Const("B1");
|
expr B1 = Const("B1");
|
||||||
|
@ -194,87 +203,129 @@ void add_basic_theory(environment & env) {
|
||||||
expr piABx = Pi({x, A}, B(x));
|
expr piABx = Pi({x, A}, B(x));
|
||||||
expr A_arrow_u = A >> TypeU;
|
expr A_arrow_u = A >> TypeU;
|
||||||
|
|
||||||
|
// not(x) = (x = False)
|
||||||
|
env.add_definition(not_fn_name, p1, Fun({x, Bool}, Eq(x, False)));
|
||||||
|
|
||||||
// and(x, y) = (if bool x y false)
|
// and(x, y) = (if bool x y false)
|
||||||
env.add_definition(and_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, y, True)));
|
env.add_definition(and_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, y, False)));
|
||||||
// or(x, y) = (if bool x true y)
|
// or(x, y) = (if bool x true y)
|
||||||
env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, False, y)));
|
env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, True, y)));
|
||||||
// not(x) = (if bool x false true)
|
|
||||||
env.add_definition(not_fn_name, p1, Fun({x, Bool}, bIf(x, False, True)));
|
|
||||||
|
|
||||||
// forall : Pi (A : Type u), (A -> Bool) -> Bool
|
// forall : Pi (A : Type u), (A -> Bool) -> Bool
|
||||||
env.add_definition(forall_fn_name, q_type, Fun({{A, TypeU}, {P, A_pred}}, Eq(P, Fun({x, A}, True))));
|
env.add_definition(forall_fn_name, q_type, Fun({{A, TypeU}, {P, A_pred}}, Eq(P, Fun({x, A}, True))));
|
||||||
env.add_definition(exists_fn_name, q_type, Fun({{A,TypeU}, {P, A_pred}}, Not(Forall(A, Fun({x, A}, Not(P(x)))))));
|
env.add_definition(exists_fn_name, q_type, Fun({{A,TypeU}, {P, A_pred}}, Not(Forall(A, Fun({x, A}, Not(P(x)))))));
|
||||||
|
|
||||||
// refl : Pi (A : Type u) (a : A), a = a
|
// Refl : Pi (A : Type u) (a : A), a = a
|
||||||
env.add_axiom(refl_fn_name, Pi({{A, TypeU}, {a, A}}, Eq(a, a)));
|
env.add_axiom(refl_fn_name, Pi({{A, TypeU}, {a, A}}, Eq(a, a)));
|
||||||
|
|
||||||
// subst : Pi (A : Type u) (P : A -> bool) (a b : A) (H1 : P a) (H2 : a = b), P b
|
// True_neq_False : Not(True = False)
|
||||||
|
env.add_theorem(true_neq_false_name, Not(Eq(True, False)), Trivial);
|
||||||
|
|
||||||
|
// Case : Pi (P : Bool -> Bool) (H1 : P True) (H2 : P False) (a : Bool), P a
|
||||||
|
env.add_axiom(case_fn_name, Pi({{P, Bool >> Bool}, {H1, P(True)}, {H2, P(False)}, {a, Bool}}, P(a)));
|
||||||
|
|
||||||
|
// Truth : True := Trivial
|
||||||
|
env.add_theorem(truth_name, True, Trivial);
|
||||||
|
|
||||||
|
// False_elim : Pi (a : Bool) (H : False), a
|
||||||
|
env.add_theorem(false_elim_fn_name, Pi({{a, Bool}, {H, False}}, a),
|
||||||
|
Fun({{a, Bool}, {H, False}}, Case(Fun({x, Bool}, x), Truth, H, a)));
|
||||||
|
|
||||||
|
// EM : Pi (a : Bool), Or(a, Not(a))
|
||||||
|
env.add_theorem(em_fn_name, Pi({a, Bool}, Or(a, Not(a))),
|
||||||
|
Fun({a, Bool}, Case(Fun({x, Bool}, Or(x, Not(x))), Trivial, Trivial, a)));
|
||||||
|
|
||||||
|
// DoubleNeg : Pi (a : Bool), Eq(Not(Not(a)), a)
|
||||||
|
env.add_theorem(double_neg_fn_name, Pi({a, Bool}, Eq(Not(Not(a)), a)),
|
||||||
|
Fun({a, Bool}, Case(Fun({x, Bool}, Eq(Not(Not(x)), x)), Trivial, Trivial, a)));
|
||||||
|
|
||||||
|
env.add_theorem(name("or_idempotent"), Pi({a, Bool}, Eq(Or(a, a), a)),
|
||||||
|
Fun({a, Bool}, Case(Fun({x, Bool}, Eq(Or(x, x), x)), Trivial, Trivial, a)));
|
||||||
|
|
||||||
|
env.add_theorem(name("or_comm"), Pi({{a, Bool}, {b, Bool}}, Eq(Or(a, b), Or(b, a))),
|
||||||
|
Fun({{a, Bool}, {b, Bool}},
|
||||||
|
Case(Fun({x, Bool}, Eq(Or(x, b), Or(b, x))),
|
||||||
|
Case(Fun({y, Bool}, Eq(Or(True, y), Or(y, True))), Trivial, Trivial, b),
|
||||||
|
Case(Fun({y, Bool}, Eq(Or(False, y), Or(y, False))), Trivial, Trivial, b),
|
||||||
|
a)));
|
||||||
|
|
||||||
|
env.add_theorem(name("or_assoc"), Pi({{a, Bool}, {b, Bool}, {c, Bool}}, Eq(Or(Or(a, b), c), Or(a, Or(b, c)))),
|
||||||
|
Fun({{a, Bool}, {b, Bool}, {c, Bool}},
|
||||||
|
Case(Fun({x, Bool}, Eq(Or(Or(x, b), c), Or(x, Or(b, c)))),
|
||||||
|
Case(Fun({y, Bool}, Eq(Or(Or(True, y), c), Or(True, Or(y, c)))),
|
||||||
|
Case(Fun({z, Bool}, Eq(Or(Or(True, True), z), Or(True, Or(True, z)))), Trivial, Trivial, c),
|
||||||
|
Case(Fun({z, Bool}, Eq(Or(Or(True, False), z), Or(True, Or(False, z)))), Trivial, Trivial, c), b),
|
||||||
|
Case(Fun({y, Bool}, Eq(Or(Or(False, y), c), Or(False, Or(y, c)))),
|
||||||
|
Case(Fun({z, Bool}, Eq(Or(Or(False, True), z), Or(False, Or(True, z)))), Trivial, Trivial, c),
|
||||||
|
Case(Fun({z, Bool}, Eq(Or(Or(False, False), z), Or(False, Or(False, z)))), Trivial, Trivial, c), b), a)));
|
||||||
|
|
||||||
|
// Subst : Pi (A : Type u) (P : A -> bool) (a b : A) (H1 : P a) (H2 : a = b), P b
|
||||||
env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {b, A}, {H1, P(a)}, {H2, Eq(a,b)}}, P(b)));
|
env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {b, A}, {H1, P(a)}, {H2, Eq(a,b)}}, P(b)));
|
||||||
|
|
||||||
// eta : Pi (A : Type u) (B : A -> Type u), f : (Pi x : A, B x), (Fun x : A => f x) = f
|
// Eta : Pi (A : Type u) (B : A -> Type u), f : (Pi x : A, B x), (Fun x : A => f x) = f
|
||||||
env.add_axiom(eta_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}}, Eq(Fun({x, A}, f(x)), f)));
|
env.add_axiom(eta_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}}, Eq(Fun({x, A}, f(x)), f)));
|
||||||
|
|
||||||
// symm : Pi (A : Type u) (a b : A) (H : a = b), b = a :=
|
// Symm : Pi (A : Type u) (a b : A) (H : a = b), b = a :=
|
||||||
// Subst A (Fun x : A => x = a) a b (Refl A a) H
|
// Subst A (Fun x : A => x = a) a b (Refl A a) H
|
||||||
env.add_theorem(symm_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(b, a)),
|
env.add_theorem(symm_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(b, a)),
|
||||||
Fun({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}},
|
Fun({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}},
|
||||||
Subst(A, Fun({x, A}, Eq(x,a)), a, b, Refl(A, a), H)));
|
Subst(A, Fun({x, A}, Eq(x,a)), a, b, Refl(A, a), H)));
|
||||||
|
|
||||||
// trans: Pi (A: Type u) (a b c : A) (H1 : a = b) (H2 : b = c), a = c :=
|
// Trans: Pi (A: Type u) (a b c : A) (H1 : a = b) (H2 : b = c), a = c :=
|
||||||
// Subst A (Fun x : A => a = x) b c H1 H2
|
// Subst A (Fun x : A => a = x) b c H1 H2
|
||||||
env.add_theorem(trans_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)),
|
env.add_theorem(trans_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)),
|
||||||
Fun({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a,b)}, {H2, Eq(b,c)}},
|
Fun({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a,b)}, {H2, Eq(b,c)}},
|
||||||
Subst(A, Fun({x, A}, Eq(a, x)), b, c, H1, H2)));
|
Subst(A, Fun({x, A}, Eq(a, x)), b, c, H1, H2)));
|
||||||
|
|
||||||
// xtrans: Pi (A: Type u) (B : Type u) (a : A) (b c : B) (H1 : a = b) (H2 : b = c), a = c :=
|
// xTrans: Pi (A: Type u) (B : Type u) (a : A) (b c : B) (H1 : a = b) (H2 : b = c), a = c :=
|
||||||
// Subst B (Fun x : B => a = x) b c H1 H2
|
// Subst B (Fun x : B => a = x) b c H1 H2
|
||||||
env.add_theorem(xtrans_fn_name, Pi({{A, TypeU}, {B, TypeU}, {a, A}, {b, B}, {c, B}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)),
|
env.add_theorem(xtrans_fn_name, Pi({{A, TypeU}, {B, TypeU}, {a, A}, {b, B}, {c, B}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)),
|
||||||
Fun({{A, TypeU}, {B, TypeU}, {a, A}, {b, B}, {c, B}, {H1, Eq(a, b)}, {H2, Eq(b, c)}},
|
Fun({{A, TypeU}, {B, TypeU}, {a, A}, {b, B}, {c, B}, {H1, Eq(a, b)}, {H2, Eq(b, c)}},
|
||||||
Subst(B, Fun({x, B}, Eq(a, x)), b, c, H1, H2)));
|
Subst(B, Fun({x, B}, Eq(a, x)), b, c, H1, H2)));
|
||||||
|
|
||||||
// congr1 : Pi (A : Type u) (B : A -> Type u) (f g: Pi (x : A) B x) (a : A) (H : f = g), f a = g a :=
|
// Congr1 : Pi (A : Type u) (B : A -> Type u) (f g: Pi (x : A) B x) (a : A) (H : f = g), f a = g a :=
|
||||||
// Subst piABx (Fun h : piABx => f a = h a) f g (Refl piABx f) H
|
// Subst piABx (Fun h : piABx => f a = h a) f g (Refl piABx f) H
|
||||||
env.add_theorem(congr1_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {H, Eq(f, g)}}, Eq(f(a), g(a))),
|
env.add_theorem(congr1_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {H, Eq(f, g)}}, Eq(f(a), g(a))),
|
||||||
Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {H, Eq(f, g)}},
|
Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {H, Eq(f, g)}},
|
||||||
Subst(piABx, Fun({h, piABx}, Eq(f(a), h(a))), f, g, Refl(piABx, f), H)));
|
Subst(piABx, Fun({h, piABx}, Eq(f(a), h(a))), f, g, Refl(piABx, f), H)));
|
||||||
|
|
||||||
// congr2 : Pi (A : Type u) (B : A -> Type u) (f : Pi (x : A) B x) (a b : A) (H : a = b), f a = f b :=
|
// Congr2 : Pi (A : Type u) (B : A -> Type u) (f : Pi (x : A) B x) (a b : A) (H : a = b), f a = f b :=
|
||||||
// Subst A (Fun x : A => f a = f x) a b (Refl A a) H
|
// Subst A (Fun x : A => f a = f x) a b (Refl A a) H
|
||||||
env.add_theorem(congr2_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(f(a), f(b))),
|
env.add_theorem(congr2_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(f(a), f(b))),
|
||||||
Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {a, A}, {b, A}, {H, Eq(a, b)}},
|
Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {a, A}, {b, A}, {H, Eq(a, b)}},
|
||||||
Subst(A, Fun({x, A}, Eq(f(a), f(x))), a, b, Refl(A, a), H)));
|
Subst(A, Fun({x, A}, Eq(f(a), f(x))), a, b, Refl(A, a), H)));
|
||||||
|
|
||||||
// congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f a = g b :=
|
// Congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f a = g b :=
|
||||||
// xTrans (B a) (B b) (f a) (f b) (g b) (congr2 A B f g b H1) (congr1 A B f a b H2)
|
// xTrans (B a) (B b) (f a) (f b) (g b) (congr2 A B f g b H1) (congr1 A B f a b H2)
|
||||||
env.add_theorem(congr_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}}, Eq(f(a), g(b))),
|
env.add_theorem(congr_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}}, Eq(f(a), g(b))),
|
||||||
Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}},
|
Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}},
|
||||||
xTrans(B(a), B(b), f(a), f(b), g(b),
|
xTrans(B(a), B(b), f(a), f(b), g(b),
|
||||||
Congr2(A, B, f, a, b, H2), Congr1(A, B, f, g, b, H1))));
|
Congr2(A, B, f, a, b, H2), Congr1(A, B, f, g, b, H1))));
|
||||||
|
|
||||||
// eq_mp : Pi (a b: Bool) (H1 : a = b) (H2 : a), b :=
|
// EqMP : Pi (a b: Bool) (H1 : a = b) (H2 : a), b :=
|
||||||
// Subst Bool (Fun x : Bool => x) a b H2 H1
|
// Subst Bool (Fun x : Bool => x) a b H2 H1
|
||||||
env.add_theorem(eq_mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, b),
|
env.add_theorem(eq_mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, b),
|
||||||
Fun({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}},
|
Fun({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}},
|
||||||
Subst(Bool, Fun({x, Bool}, x), a, b, H2, H1)));
|
Subst(Bool, Fun({x, Bool}, x), a, b, H2, H1)));
|
||||||
|
|
||||||
// truth : True := Refl Bool True
|
// EqTElim : Pi (a : Bool) (H : a = True), a := EqMP(True, a, Symm(Bool, a, True, H), Truth)
|
||||||
env.add_theorem(truth_name, True, Refl(Bool, True));
|
|
||||||
|
|
||||||
// eqt_elim : Pi (a : Bool) (H : a = True), a := EqMP(True, a, Symm(Bool, a, True, H), Truth)
|
|
||||||
env.add_theorem(eqt_elim_fn_name, Pi({{a, Bool}, {H, Eq(a, True)}}, a),
|
env.add_theorem(eqt_elim_fn_name, Pi({{a, Bool}, {H, Eq(a, True)}}, a),
|
||||||
Fun({{a, Bool}, {H, Eq(a, True)}},
|
Fun({{a, Bool}, {H, Eq(a, True)}},
|
||||||
EqMP(True, a, Symm(Bool, a, True, H), Truth)));
|
EqMP(True, a, Symm(Bool, a, True, H), Truth)));
|
||||||
|
|
||||||
// foralle : Pi (A : Type u) (P : A -> bool) (H : (forall A P)) (a : A), P a
|
// ForallElim : Pi (A : Type u) (P : A -> bool) (H : (forall A P)) (a : A), P a
|
||||||
env.add_theorem(foralle_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}}, P(a)),
|
env.add_theorem(forall_elim_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}}, P(a)),
|
||||||
Fun({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}},
|
Fun({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}},
|
||||||
EqTElim(P(a), Congr1(A, Fun({x, A}, Bool), P, Fun({x, A}, True), a, H))));
|
EqTElim(P(a), Congr1(A, Fun({x, A}, Bool), P, Fun({x, A}, True), a, H))));
|
||||||
|
|
||||||
|
// STOPPED HERE
|
||||||
|
|
||||||
|
// foralli : Pi (A : Type u) (P : A -> bool) (H : Pi (x : A), P x), (forall A P)
|
||||||
|
env.add_axiom(foralli_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, Pi({x, A}, P(x))}}, Forall(A, P)));
|
||||||
|
|
||||||
// ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g
|
// ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g
|
||||||
env.add_axiom(ext_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi({x, A}, Eq(f(x), g(x)))}}, Eq(f, g)));
|
env.add_axiom(ext_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi({x, A}, Eq(f(x), g(x)))}}, Eq(f, g)));
|
||||||
|
|
||||||
// foralli : Pi (A : Type u) (P : A -> bool) (H : Pi (x : A), P x), (forall A P)
|
|
||||||
env.add_axiom(foralli_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, Pi({x, A}, P(x))}}, Forall(A, P)));
|
|
||||||
|
|
||||||
// domain_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), A = A1
|
// domain_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), A = A1
|
||||||
expr piA1B1x = Pi({x, A1}, B1(x));
|
expr piA1B1x = Pi({x, A1}, B1(x));
|
||||||
|
|
|
@ -107,6 +107,7 @@ expr mk_refl_fn();
|
||||||
bool is_refl_fn(expr const & e);
|
bool is_refl_fn(expr const & e);
|
||||||
/** \brief (Axiom) A : Type u, a : A |- Refl(A, a) : a = a */
|
/** \brief (Axiom) A : Type u, a : A |- Refl(A, a) : a = a */
|
||||||
inline expr Refl(expr const & A, expr const & a) { return mk_app(mk_refl_fn(), A, a); }
|
inline expr Refl(expr const & A, expr const & a) { return mk_app(mk_refl_fn(), A, a); }
|
||||||
|
#define Trivial Refl(Bool, True)
|
||||||
|
|
||||||
expr mk_subst_fn();
|
expr mk_subst_fn();
|
||||||
bool is_subst_fn(expr const & e);
|
bool is_subst_fn(expr const & e);
|
||||||
|
@ -163,15 +164,13 @@ bool is_eqt_elim(expr const & e);
|
||||||
// \brief (Theorem) a : Bool, H : a = True |- EqT(a, H) : a
|
// \brief (Theorem) a : Bool, H : a = True |- EqT(a, H) : a
|
||||||
inline expr EqTElim(expr const & a, expr const & H) { return mk_app(mk_eqt_elim_fn(), a, H); }
|
inline expr EqTElim(expr const & a, expr const & H) { return mk_app(mk_eqt_elim_fn(), a, H); }
|
||||||
|
|
||||||
expr mk_foralle_fn();
|
expr mk_forall_elim_fn();
|
||||||
bool is_foralle_fn(expr const & e);
|
bool is_forall_elim_fn(expr const & e);
|
||||||
// \brief (Theorem) A : Type u, P : A -> Bool, H : (Forall A P), a : A |- Forallelim(A, P, H, a) : P a
|
// \brief (Theorem) A : Type u, P : A -> Bool, H : (Forall A P), a : A |- Forallelim(A, P, H, a) : P a
|
||||||
inline expr ForallElim(expr const & A, expr const & P, expr const & H, expr const & a) { return mk_app(mk_foralle_fn(), A, P, H, a); }
|
inline expr ForallElim(expr const & A, expr const & P, expr const & H, expr const & a) { return mk_app(mk_forall_elim_fn(), A, P, H, a); }
|
||||||
|
|
||||||
expr mk_ext_fn();
|
expr mk_ext_fn();
|
||||||
bool is_ext_fn(expr const & e);
|
bool is_ext_fn(expr const & e);
|
||||||
expr mk_foralle_fn();
|
|
||||||
bool is_foralle_fn(expr const & e);
|
|
||||||
expr mk_foralli_fn();
|
expr mk_foralli_fn();
|
||||||
bool is_foralli_fn(expr const & e);
|
bool is_foralli_fn(expr const & e);
|
||||||
expr mk_domain_inj_fn();
|
expr mk_domain_inj_fn();
|
||||||
|
|
Loading…
Reference in a new issue