diff --git a/library/hott/algebra/category/constructions.lean b/library/hott/algebra/category/constructions.lean index 5697d90b1..0db678962 100644 --- a/library/hott/algebra/category/constructions.lean +++ b/library/hott/algebra/category/constructions.lean @@ -8,7 +8,8 @@ import .natural_transformation import data.unit data.sigma data.prod data.empty data.bool -open eq eq.ops prod +open path prod + namespace category namespace opposite section diff --git a/library/hott/algebra/category/natural_transformation.lean b/library/hott/algebra/category/natural_transformation.lean index 3b488183b..ef4b7df2c 100644 --- a/library/hott/algebra/category/natural_transformation.lean +++ b/library/hott/algebra/category/natural_transformation.lean @@ -3,7 +3,7 @@ -- Author: Floris van Doorn, Jakob von Raumer import .functor hott.axioms.funext -open precategory path functor +open precategory path functor truncation inductive natural_transformation {C D : Precategory} (F G : C ⇒ D) : Type := mk : Π (η : Π (a : C), hom (F a) (G a)) @@ -35,20 +35,35 @@ namespace natural_transformation infixr `∘n`:60 := compose - definition foo (C : Precategory) (a b : C) (f g : hom a b) (p q : f ≈ g) : p ≈ q := + /-definition foo (C : Precategory) (a b : C) (f g : hom a b) (p q : f ≈ g) : p ≈ q := @truncation.is_hset.elim _ !homH f g p q + definition nt_is_hset {F G : functor C D} : is_hset (F ⟹ G) := sorry + + definition eta_nat_path {η₁ η₂ : F ⟹ G} (H1 : natural_map η₁ ≈ natural_map η₂) + (H2 : (H1 ▹ naturality η₁) ≈ naturality η₂) : η₁ ≈ η₂ := + rec_on η₁ (λ eta1 nat1, rec_on η₂ (λ eta2 nat2, sorry))-/ + protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) [fext : funext.{l_1 l_4}] : η₃ ∘n (η₂ ∘n η₁) ≈ (η₃ ∘n η₂) ∘n η₁ := - dcongr_arg2 mk (funext.path_forall _ _ (λ x, !assoc)) sorry + have prir [visible] : is_hset (Π {a b : C} (f : hom a b), I f ∘ (η₃ ∘n η₂) a ∘ η₁ a ≈ ((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f), + from sorry, + path.dcongr_arg2 mk + (funext.path_forall + (λ (x : C), η₃ x ∘ (η₂ x ∘ η₁ x)) + (λ (x : C), (η₃ x ∘ η₂ x) ∘ η₁ x) + (λ x, assoc (η₃ x) (η₂ x) (η₁ x)) + ) + sorry --(@is_hset.elim _ _ _ _ _ _) protected definition id {C D : Precategory} {F : functor C D} : natural_transformation F F := mk (λa, id) (λa b f, !id_right ⬝ (!id_left⁻¹)) protected definition ID {C D : Precategory} (F : functor C D) : natural_transformation F F := id protected theorem id_left (η : F ⟹ G) [fext : funext] : natural_transformation.compose id η ≈ η := - rec (λf H, path.dcongr_arg2 mk (funext.path_forall _ _ (λ x, !id_left)) sorry) η + rec_on η (λf H, path.dcongr_arg2 mk (funext.path_forall _ _ (λ x, !id_left)) sorry) protected theorem id_right (η : F ⟹ G) [fext : funext] : natural_transformation.compose η id ≈ η := rec (λf H, path.dcongr_arg2 mk (funext.path_forall _ _ (λ x, !id_right)) sorry) η + end natural_transformation diff --git a/library/hott/equiv.lean b/library/hott/equiv.lean index b9a478fee..3afc3fa51 100644 --- a/library/hott/equiv.lean +++ b/library/hott/equiv.lean @@ -16,6 +16,7 @@ structure is_equiv [class] {A B : Type} (f : A → B) := (sect : (inv ∘ f) ∼ id) (adj : Πx, retr (f x) ≈ ap f (sect x)) + -- A more bundled version of equivalence to calculate with structure equiv (A B : Type) := (to_fun : A → B) diff --git a/library/hott/path.lean b/library/hott/path.lean index 16044d262..dd98bf0ca 100644 --- a/library/hott/path.lean +++ b/library/hott/path.lean @@ -642,6 +642,36 @@ definition apD02_pp {A} (B : A → Type) (f : Π x:A, B x) {x y : A} ⬝ (whiskerR ((transport2_p2p B r1 r2 (f x))⁻¹) (apD f p3)) := rec_on r2 (rec_on r1 (rec_on p1 idp)) +section +variables {A B C D E : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D} + +theorem congr_arg2 (f : A → B → C) (Ha : a ≈ a') (Hb : b ≈ b') : f a b ≈ f a' b' := +rec_on Ha (rec_on Hb idp) + +theorem congr_arg3 (f : A → B → C → D) (Ha : a ≈ a') (Hb : b ≈ b') (Hc : c ≈ c') + : f a b c ≈ f a' b' c' := +rec_on Ha (congr_arg2 (f a) Hb Hc) + +theorem congr_arg4 (f : A → B → C → D → E) (Ha : a ≈ a') (Hb : b ≈ b') (Hc : c ≈ c') (Hd : d ≈ d') + : f a b c d ≈ f a' b' c' d' := +rec_on Ha (congr_arg3 (f a) Hb Hc Hd) + +end + +section +variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} + {E : Πa b c, D a b c → Type} {F : Type} +variables {a a' : A} + {b : B a} {b' : B a'} + {c : C a b} {c' : C a' b'} + {d : D a b c} {d' : D a' b' c'} + +theorem dcongr_arg2 (f : Πa, B a → F) (Ha : a ≈ a') (Hb : Ha ▹ b ≈ b') + : f a b ≈ f a' b' := +rec_on Hb (rec_on Ha idp) + +end + /- From the Coq version: -- ** Tactics, hints, and aliases @@ -694,4 +724,5 @@ Ltac hott_simpl := autorewrite with paths in * |- * ; auto with path_hints. -/ + end path