refactor(library/logic): rename theorems

This commit is contained in:
Jeremy Avigad 2014-12-15 16:13:04 -05:00
parent 3e9a484851
commit da719e6ee4
10 changed files with 99 additions and 82 deletions

View file

@ -48,8 +48,8 @@ let u : {x | (∃y, P y) → P x} :=
has_property u Hex has_property u Hex
theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃y, P y) : theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃y, P y) :
P (@epsilon A (exists_imp_nonempty Hex) P) := P (@epsilon A (nonempty_of_exists Hex) P) :=
epsilon_spec_aux (exists_imp_nonempty Hex) P Hex epsilon_spec_aux (nonempty_of_exists Hex) P Hex
theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (nonempty.intro a) (λx, x = a) = a := theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (nonempty.intro a) (λx, x = a) = a :=
epsilon_spec (exists_intro a (eq.refl a)) epsilon_spec (exists_intro a (eq.refl a))
@ -60,7 +60,7 @@ epsilon_spec (exists_intro a (eq.refl a))
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Πx, B x → Prop} (H : ∀x, ∃y, R x y) : theorem axiom_of_choice {A : Type} {B : A → Type} {R : Πx, B x → Prop} (H : ∀x, ∃y, R x y) :
∃f, ∀x, R x (f x) := ∃f, ∀x, R x (f x) :=
let f := λx, @epsilon _ (exists_imp_nonempty (H x)) (λy, R x y), let f := λx, @epsilon _ (nonempty_of_exists (H x)) (λy, R x y),
H := take x, epsilon_spec (H x) H := take x, epsilon_spec (H x)
in exists_intro f H in exists_intro f H

View file

@ -1,12 +1,16 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. /-
-- Released under Apache 2.0 license as described in the file LICENSE. Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Author: Leonardo de Moura Released under Apache 2.0 license as described in the file LICENSE.
Module: cast.lean
Author: Leonardo de Moura
Casts and heterogeneous equality. See also init.datatypes and init.logic.
-/
import logic.eq logic.quantifiers import logic.eq logic.quantifiers
open eq.ops open eq.ops
-- cast.lean
-- =========
section section
universe variable u universe variable u
variables {A B : Type.{u}} variables {A B : Type.{u}}
@ -30,20 +34,24 @@ namespace heq
definition type_eq (H : a == b) : A = B := definition type_eq (H : a == b) : A = B :=
heq.rec_on H (eq.refl A) heq.rec_on H (eq.refl A)
theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ := theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) :
C b H₁ :=
rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁ rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁
theorem to_cast_eq (H : a == b) : cast (type_eq H) a = b := theorem to_cast_eq (H : a == b) : cast (type_eq H) a = b :=
drec_on H !cast_eq drec_on H !cast_eq
end heq end heq
theorem eq_rec_heq {A : Type} {P : A → Type} {a a' : A} (H : a = a') (p : P a) : eq.rec_on H p == p := theorem eq_rec_heq {A : Type} {P : A → Type} {a a' : A} (H : a = a') (p : P a) :
eq.rec_on H p == p :=
eq.drec_on H !heq.refl eq.drec_on H !heq.refl
section section
universe variables u v universe variables u v
variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B} variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B}
theorem hcongr_fun {f : Π x, P x} {f' : Π x, P' x} (a : A) (H₁ : f == f') (H₂ : P = P') : f a == f' a :=
theorem hcongr_fun {f : Π x, P x} {f' : Π x, P' x} (a : A) (H₁ : f == f') (H₂ : P = P') :
f a == f' a :=
have aux : ∀ (f : Π x, P x) (f' : Π x, P x), f == f' → f a == f' a, from have aux : ∀ (f : Π x, P x) (f' : Π x, P x), f == f' → f a == f' a, from
take f f' H, heq.to_eq H ▸ heq.refl (f a), take f f' H, heq.to_eq H ▸ heq.refl (f a),
(H₂ ▸ aux) f f' H₁ (H₂ ▸ aux) f f' H₁
@ -105,10 +113,11 @@ section
take H : P = P, heq.refl (eq.rec_on H f a), take H : P = P, heq.refl (eq.rec_on H f a),
(H ▸ aux) H (H ▸ aux) H
theorem rec_on_pull (H : P = P') (f : Π x, P x) (a : A) : eq.rec_on H f a = eq.rec_on (congr_fun H a) (f a) := theorem rec_on_pull (H : P = P') (f : Π x, P x) (a : A) :
eq.rec_on H f a = eq.rec_on (congr_fun H a) (f a) :=
heq.to_eq (calc heq.to_eq (calc
eq.rec_on H f a == f a : rec_on_app H f a eq.rec_on H f a == f a : rec_on_app H f a
... == eq.rec_on (congr_fun H a) (f a) : heq.symm (eq_rec_heq (congr_fun H a) (f a))) ... == eq.rec_on (congr_fun H a) (f a) : heq.symm (eq_rec_heq (congr_fun H a) (f a)))
theorem cast_app (H : P = P') (f : Π x, P x) (a : A) : cast (pi_eq H) f a == f a := theorem cast_app (H : P = P') (f : Π x, P x) (a : A) : cast (pi_eq H) f a == f a :=
have H₁ : ∀ (H : (Π x, P x) = (Π x, P x)), cast H f a == f a, from have H₁ : ∀ (H : (Π x, P x) = (Π x, P x)), cast H f a == f a, from
@ -116,7 +125,6 @@ section
have H₂ : ∀ (H : (Π x, P x) = (Π x, P' x)), cast H f a == f a, from have H₂ : ∀ (H : (Π x, P x) = (Π x, P' x)), cast H f a == f a, from
H ▸ H₁, H ▸ H₁,
H₂ (pi_eq H) H₂ (pi_eq H)
end end
section section
@ -144,7 +152,8 @@ section
(Hd : cast (dcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := (Hd : cast (dcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' :=
heq.to_eq (hcongr_arg4 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc) (eq_rec_to_heq Hd)) heq.to_eq (hcongr_arg4 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc) (eq_rec_to_heq Hd))
--mixed versions (we want them for example if C a' b' is a subsingleton, like a proposition. Then proving eq is easier than proving heq) -- mixed versions (we want them for example if C a' b' is a subsingleton, like a proposition.
-- Then proving eq is easier than proving heq)
theorem hdcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : b == b') theorem hdcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : b == b')
(Hc : cast (heq.to_eq (hcongr_arg2 C Ha Hb)) c = c') (Hc : cast (heq.to_eq (hcongr_arg2 C Ha Hb)) c = c')
: f a b c = f a' b' c' := : f a b c = f a' b' c' :=

View file

@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.connectives Module: logic.connectives
Authors: Jeremy Avigad, Leonardo de Moura Authors: Jeremy Avigad, Leonardo de Moura
The propositional connectives. See also init.datatypes. The propositional connectives. See also init.datatypes and init.logic.
-/ -/
variables {a b c d : Prop} variables {a b c d : Prop}

View file

@ -1,6 +1,10 @@
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved. /-
--- Released under Apache 2.0 license as described in the file LICENSE. Copyright (c) 2014 Microsoft Corporation. All rights reserved.
--- Author: Jeremy Avigad Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.default
Author: Jeremy Avigad
-/
import logic.eq logic.connectives logic.cast logic.subsingleton import logic.eq logic.connectives logic.cast logic.subsingleton
import logic.quantifiers logic.instances logic.identities import logic.quantifiers logic.instances logic.identities

View file

@ -1,16 +1,13 @@
/- /-
Copyright (c) 2014 Microsoft Corporation. All rights reserved. Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.eq
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
Additional declarations/theorems about equality Additional declarations/theorems about equality. See also init.datatypes and init.logic.
-/ -/
-- logic.eq
-- ========
-- Equality.
open eq.ops open eq.ops
namespace eq namespace eq

View file

@ -1,36 +1,37 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. /-
-- Released under Apache 2.0 license as described in the file LICENSE. Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Authors: Jeremy Avigad, Leonardo de Moura Released under Apache 2.0 license as described in the file LICENSE.
-- logic.identities Module: logic.identities
-- ============================ Authors: Jeremy Avigad, Leonardo de Moura
-- Useful logical identities. In the absence of propositional extensionality, some of the Useful logical identities. Since we are not using propositional extensionality, some of the
-- calculations use the type class support provided by logic.instances calculations use the type class support provided by logic.instances.
-/
import logic.connectives logic.instances logic.quantifiers logic.cast import logic.connectives logic.instances logic.quantifiers logic.cast
open relation decidable relation.iff_ops open relation decidable relation.iff_ops
theorem or_right_comm (a b c : Prop) : (a b) c ↔ (a c) b := theorem or.right_comm (a b c : Prop) : (a b) c ↔ (a c) b :=
calc calc
(a b) c ↔ a (b c) : or.assoc (a b) c ↔ a (b c) : or.assoc
... ↔ a (c b) : {or.comm} ... ↔ a (c b) : {or.comm}
... ↔ (a c) b : iff.symm or.assoc ... ↔ (a c) b : iff.symm or.assoc
theorem or_left_comm (a b c : Prop) : a (b c)↔ b (a c) := theorem or.left_comm (a b c : Prop) : a (b c)↔ b (a c) :=
calc calc
a (b c) ↔ (a b) c : iff.symm or.assoc a (b c) ↔ (a b) c : iff.symm or.assoc
... ↔ (b a) c : {or.comm} ... ↔ (b a) c : {or.comm}
... ↔ b (a c) : or.assoc ... ↔ b (a c) : or.assoc
theorem and_right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b := theorem and.right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
calc calc
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and.assoc (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and.assoc
... ↔ a ∧ (c ∧ b) : {and.comm} ... ↔ a ∧ (c ∧ b) : {and.comm}
... ↔ (a ∧ c) ∧ b : iff.symm and.assoc ... ↔ (a ∧ c) ∧ b : iff.symm and.assoc
theorem and_left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) := theorem and.left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) :=
calc calc
a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff.symm and.assoc a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff.symm and.assoc
... ↔ (b ∧ a) ∧ c : {and.comm} ... ↔ (b ∧ a) ∧ c : {and.comm}
@ -46,14 +47,14 @@ iff.intro
theorem not_not_elim {a : Prop} [D : decidable a] (H : ¬¬a) : a := theorem not_not_elim {a : Prop} [D : decidable a] (H : ¬¬a) : a :=
iff.mp not_not_iff H iff.mp not_not_iff H
theorem not_true_iff_false : (¬true) ↔ false := theorem not_true_iff_false : ¬true ↔ false :=
iff.intro (assume H, H trivial) false.elim iff.intro (assume H, H trivial) false.elim
theorem not_false_iff_true : (¬false) ↔ true := theorem not_false_iff_true : ¬false ↔ true :=
iff.intro (assume H, trivial) (assume H H', H') iff.intro (assume H, trivial) (assume H H', H')
theorem not_or_iff_not_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] : theorem not_or_iff_not_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
(¬(a b))(¬a ∧ ¬b) := ¬(a b) ↔ ¬a ∧ ¬b :=
iff.intro iff.intro
(assume H, or.elim (em a) (assume H, or.elim (em a)
(assume Ha, absurd (or.inl Ha) H) (assume Ha, absurd (or.inl Ha) H)
@ -65,7 +66,8 @@ iff.intro
(assume Ha, absurd Ha (and.elim_left H)) (assume Ha, absurd Ha (and.elim_left H))
(assume Hb, absurd Hb (and.elim_right H))) (assume Hb, absurd Hb (and.elim_right H)))
theorem not_and {a b : Prop} [Da : decidable a] [Db : decidable b] : (¬(a ∧ b)) ↔ (¬a ¬b) := theorem not_and_iff_not_or_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
¬(a ∧ b) ↔ ¬a ¬b :=
iff.intro iff.intro
(assume H, or.elim (em a) (assume H, or.elim (em a)
(assume Ha, or.elim (em b) (assume Ha, or.elim (em b)
@ -77,7 +79,7 @@ iff.intro
(assume Hna, absurd (and.elim_left N) Hna) (assume Hna, absurd (and.elim_left N) Hna)
(assume Hnb, absurd (and.elim_right N) Hnb)) (assume Hnb, absurd (and.elim_right N) Hnb))
theorem imp_or {a b : Prop} [Da : decidable a] : (a → b) ↔ (¬a b) := theorem imp_iff_not_or {a b : Prop} [Da : decidable a] : (a → b) ↔ ¬a b :=
iff.intro iff.intro
(assume H : a → b, (or.elim (em a) (assume H : a → b, (or.elim (em a)
(assume Ha : a, or.inr (H Ha)) (assume Ha : a, or.inr (H Ha))
@ -85,27 +87,29 @@ iff.intro
(assume (H : ¬a b) (Ha : a), (assume (H : ¬a b) (Ha : a),
or_resolve_right H (not_not_iff⁻¹ ▸ Ha)) or_resolve_right H (not_not_iff⁻¹ ▸ Ha))
theorem not_implies {a b : Prop} [Da : decidable a] [Db : decidable b] : (¬(a → b)) ↔ (a ∧ ¬b) := theorem not_implies_iff_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
calc (¬(a → b)) ↔ (¬(¬a b)) : {imp_or} ¬(a → b) ↔ a ∧ ¬b :=
... ↔ (¬¬a ∧ ¬b) : not_or_iff_not_and_not calc
... ↔ (a ∧ ¬b) : {not_not_iff} ¬(a → b) ↔ ¬(¬a b) : {imp_iff_not_or}
... ↔ ¬¬a ∧ ¬b : not_or_iff_not_and_not
... ↔ a ∧ ¬b : {not_not_iff}
theorem peirce {a b : Prop} [D : decidable a] : ((a → b) → a) → a := theorem peirce {a b : Prop} [D : decidable a] : ((a → b) → a) → a :=
assume H, by_contradiction (assume Hna : ¬a, assume H, by_contradiction (assume Hna : ¬a,
have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna), have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna),
absurd (not_not_elim Hnna) Hna) absurd (not_not_elim Hnna) Hna)
theorem not_exists_forall {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)] theorem forall_not_of_not_exists {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)]
(H : ¬∃x, P x) : ∀x, ¬P x := (H : ¬∃x, P x) : ∀x, ¬P x :=
take x, or.elim (em (P x)) take x, or.elim (em (P x))
(assume Hp : P x, absurd (exists_intro x Hp) H) (assume Hp : P x, absurd (exists_intro x Hp) H)
(assume Hn : ¬P x, Hn) (assume Hn : ¬P x, Hn)
theorem not_forall_exists {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)] theorem exists_not_of_not_forall {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)]
[D' : decidable (∃x, ¬P x)] (H : ¬∀x, P x) : [D' : decidable (∃x, ¬P x)] (H : ¬∀x, P x) :
∃x, ¬P x := ∃x, ¬P x :=
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x, @by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
have H2 : ∀x, ¬¬P x, from @not_exists_forall _ _ (take x, not.decidable (D x)) H1, have H2 : ∀x, ¬¬P x, from @forall_not_of_not_exists _ _ (take x, not.decidable (D x)) H1,
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x), have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x),
absurd H3 H) absurd H3 H)
@ -119,32 +123,32 @@ iff.intro
(assume H1 : a, absurd H1 H) (assume H1 : a, absurd H1 H)
(assume H2 : false, false.elim H2) (assume H2 : false, false.elim H2)
theorem a_neq_a {A : Type} (a : A) : (a ≠ a) ↔ false := theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false :=
iff.intro iff.intro
(assume H, false.of_ne H) (assume H, false.of_ne H)
(assume H, false.elim H) (assume H, false.elim H)
theorem eq_id {A : Type} (a : A) : (a = a) ↔ true := theorem eq_self_iff_true {A : Type} (a : A) : (a = a) ↔ true :=
iff_true_intro rfl iff_true_intro rfl
theorem heq_id {A : Type} (a : A) : (a == a) ↔ true := theorem heq_self_iff_true {A : Type} (a : A) : (a == a) ↔ true :=
iff_true_intro (heq.refl a) iff_true_intro (heq.refl a)
theorem a_iff_not_a (a : Prop) : (a ↔ ¬a) ↔ false := theorem iff_not_self (a : Prop) : (a ↔ ¬a) ↔ false :=
iff.intro iff.intro
(assume H, (assume H,
have H' : ¬a, from assume Ha, (H ▸ Ha) Ha, have H' : ¬a, from assume Ha, (H ▸ Ha) Ha,
H' (H⁻¹ ▸ H')) H' (H⁻¹ ▸ H'))
(assume H, false.elim H) (assume H, false.elim H)
theorem true_eq_false : (true ↔ false) ↔ false := theorem true_iff_false : (true ↔ false) ↔ false :=
not_true_iff_false ▸ (a_iff_not_a true) not_true_iff_false ▸ (iff_not_self true)
theorem false_eq_true : (false ↔ true) ↔ false := theorem false_iff_true : (false ↔ true) ↔ false :=
not_false_iff_true ▸ (a_iff_not_a false) not_false_iff_true ▸ (iff_not_self false)
theorem a_eq_true (a : Prop) : (a ↔ true) ↔ a := theorem iff_true_iff (a : Prop) : (a ↔ true) ↔ a :=
iff.intro (assume H, of_iff_true H) (assume H, iff_true_intro H) iff.intro (assume H, of_iff_true H) (assume H, iff_true_intro H)
theorem a_eq_false (a : Prop) : (a ↔ false) ↔ ¬a := theorem iff_false_iff_not (a : Prop) : (a ↔ false) ↔ ¬a :=
iff.intro (assume H, not_of_iff_false H) (assume H, iff_false_intro H) iff.intro (assume H, not_of_iff_false H) (assume H, iff_false_intro H)

View file

@ -20,7 +20,6 @@ relation.is_equivalence.mk (@eq.refl T) (@eq.symm T) (@eq.trans T)
theorem is_equivalence_iff [instance] : relation.is_equivalence iff := theorem is_equivalence_iff [instance] : relation.is_equivalence iff :=
relation.is_equivalence.mk @iff.refl @iff.symm @iff.trans relation.is_equivalence.mk @iff.refl @iff.symm @iff.trans
/- congruences for logic operations -/ /- congruences for logic operations -/
theorem is_congruence_not : is_congruence iff iff not := theorem is_congruence_not : is_congruence iff iff not :=
@ -62,14 +61,12 @@ is_congruence2.mk
(assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2)) (assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2))
(assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2)))) (assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2))))
-- theorem is_congruence_const_iff [instance] := is_congruence.const iff iff.refl
definition is_congruence_not_compose [instance] := is_congruence.compose is_congruence_not definition is_congruence_not_compose [instance] := is_congruence.compose is_congruence_not
definition is_congruence_and_compose [instance] := is_congruence.compose21 is_congruence_and definition is_congruence_and_compose [instance] := is_congruence.compose21 is_congruence_and
definition is_congruence_or_compose [instance] := is_congruence.compose21 is_congruence_or definition is_congruence_or_compose [instance] := is_congruence.compose21 is_congruence_or
definition is_congruence_implies_compose [instance] := is_congruence.compose21 is_congruence_imp definition is_congruence_implies_compose [instance] := is_congruence.compose21 is_congruence_imp
definition is_congruence_iff_compose [instance] := is_congruence.compose21 is_congruence_iff definition is_congruence_iff_compose [instance] := is_congruence.compose21 is_congruence_iff
/- a general substitution operation with respect to an arbitrary congruence -/ /- a general substitution operation with respect to an arbitrary congruence -/
namespace general_subst namespace general_subst
@ -77,13 +74,11 @@ namespace general_subst
{a b : T} (H : R a b) (H1 : P a) : P b := iff.elim_left (is_congruence.app C H) H1 {a b : T} (H : R a b) (H1 : P a) : P b := iff.elim_left (is_congruence.app C H) H1
end general_subst end general_subst
/- iff can be coerced to implication -/ /- iff can be coerced to implication -/
definition mp_like_iff [instance] : relation.mp_like iff := definition mp_like_iff [instance] : relation.mp_like iff :=
relation.mp_like.mk (λa b (H : a ↔ b), iff.elim_left H) relation.mp_like.mk (λa b (H : a ↔ b), iff.elim_left H)
/- support for calculations with iff -/ /- support for calculations with iff -/
namespace iff namespace iff

View file

@ -1,22 +1,22 @@
logic logic
===== =====
Additional constructions and axioms. By default, `import logic` does not Logical constructions and theorems, beyond what has already been
import any axioms. declared in init.datatypes and init.logic.
Logical operations and connectives. The subfolder logic.axioms declares additional axioms. The command
`import logic` does not import any axioms by default.
* [connectives](connectives.lean) : the propositional connectives
* [eq](eq.lean) : additional theorems for equality and disequality * [eq](eq.lean) : additional theorems for equality and disequality
* [cast](cast.lean) : casts and heterogeneous equality * [cast](cast.lean) : casts and heterogeneous equality
* [quantifiers](quantifiers.lean) : existential and universal quantifiers * [quantifiers](quantifiers.lean) : existential and universal quantifiers
* [identities](identities.lean) : some useful identities * [identities](identities.lean) : some useful identities
* [instances](instances.lean) : class instances for eq and iff
* [subsingleton](subsingleton.lean)
* [default](default.lean)
Constructively, inhabited types have a witness, while nonempty types Subfolders:
are "proof irrelevant". Classically (assuming the axioms in
logic.axioms.hilbert) the two are equivalent. Type class inferences
are set up to use "inhabited" however, so users should use that to
declare that types have an element. Use "nonempty" in the hypothesis
of a theorem when the theorem does not depend on the witness chosen.
* [axioms](axioms/axioms.md) : additional axioms * [axioms](axioms/axioms.md) : additional axioms
* [examples](examples/examples.md) * [examples](examples/examples.md)

View file

@ -4,16 +4,18 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.quantifiers Module: logic.quantifiers
Authors: Leonardo de Moura, Jeremy Avigad Authors: Leonardo de Moura, Jeremy Avigad
Universal and existential quantifiers. See also init.logic.
-/ -/
open inhabited nonempty open inhabited nonempty
theorem exists_not_forall {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x := theorem not_forall_not_of_exists {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x :=
assume H1 : ∀x, ¬p x, assume H1 : ∀x, ¬p x,
obtain (w : A) (Hw : p w), from H, obtain (w : A) (Hw : p w), from H,
absurd Hw (H1 w) absurd Hw (H1 w)
theorem forall_not_exists {A : Type} {p : A → Prop} (H2 : ∀x, p x) : ¬∃x, ¬p x := theorem not_exists_not_of_forall {A : Type} {p : A → Prop} (H2 : ∀x, p x) : ¬∃x, ¬p x :=
assume H1 : ∃x, ¬p x, assume H1 : ∃x, ¬p x,
obtain (w : A) (Hw : ¬p w), from H1, obtain (w : A) (Hw : ¬p w), from H1,
absurd (H2 w) Hw absurd (H2 w) Hw
@ -41,12 +43,14 @@ iff.intro
(assume Hl, obtain a Hp, from Hl, Hp) (assume Hl, obtain a Hp, from Hl, Hp)
(assume Hr, inhabited.destruct H (take a, exists_intro a Hr)) (assume Hr, inhabited.destruct H (take a, exists_intro a Hr))
theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) : (∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) := theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) :
(∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) :=
iff.intro iff.intro
(assume H, and.intro (take x, and.elim_left (H x)) (take x, and.elim_right (H x))) (assume H, and.intro (take x, and.elim_left (H x)) (take x, and.elim_right (H x)))
(assume H, take x, and.intro (and.elim_left H x) (and.elim_right H x)) (assume H, take x, and.intro (and.elim_left H x) (and.elim_right H x))
theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) : (∃x, φ x ψ x) ↔ (∃x, φ x) (∃x, ψ x) := theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) :
(∃x, φ x ψ x) ↔ (∃x, φ x) (∃x, ψ x) :=
iff.intro iff.intro
(assume H, obtain (w : A) (Hw : φ w ψ w), from H, (assume H, obtain (w : A) (Hw : φ w ψ w), from H,
or.elim Hw or.elim Hw
@ -58,7 +62,7 @@ iff.intro
(assume H2, obtain (w : A) (Hw : ψ w), from H2, (assume H2, obtain (w : A) (Hw : ψ w), from H2,
exists_intro w (or.inr Hw))) exists_intro w (or.inr Hw)))
theorem exists_imp_nonempty {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A := theorem nonempty_of_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A :=
obtain w Hw, from H, nonempty.intro w obtain w Hw, from H, nonempty.intro w
section section

View file

@ -1,8 +1,11 @@
/- /-
Copyright (c) 2014 Microsoft Corporation. All rights reserved. Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Module: logic.subsingleton
Author: Floris van Doorn
-/ -/
import logic.eq import logic.eq
inductive subsingleton [class] (A : Type) : Prop := inductive subsingleton [class] (A : Type) : Prop :=
@ -28,7 +31,8 @@ subsingleton.intro (fun d1 d2,
d2) d2)
d1) d1)
protected theorem rec_subsingleton [instance] {p : Prop} [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} protected theorem rec_subsingleton [instance] {p : Prop} [H : decidable p]
{H1 : p → Type} {H2 : ¬p → Type}
(H3 : Π(h : p), subsingleton (H1 h)) (H4 : Π(h : ¬p), subsingleton (H2 h)) (H3 : Π(h : p), subsingleton (H1 h)) (H4 : Π(h : ¬p), subsingleton (H2 h))
: subsingleton (decidable.rec_on H H1 H2) := : subsingleton (decidable.rec_on H H1 H2) :=
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases" decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"