refactor(library/algebra/ring): make dvd a definition
This commit is contained in:
parent
264c88d332
commit
da7a403b6c
1 changed files with 17 additions and 33 deletions
|
@ -53,28 +53,23 @@ structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
|
||||||
|
|
||||||
/- abstract divisibility -/
|
/- abstract divisibility -/
|
||||||
|
|
||||||
structure has_dvd [class] (A : Type) extends has_mul A :=
|
section comm_semiring
|
||||||
(dvd : A → A → Prop)
|
|
||||||
(dvd_intro : ∀a b c, mul a b = c → dvd a c)
|
|
||||||
(dvd_ex : ∀ a b, dvd a b → ∃c, mul a c = b)
|
|
||||||
|
|
||||||
definition dvd [s : has_dvd A] (a b : A) : Prop := has_dvd.dvd a b
|
variables [s : comm_semiring A] (a b c : A)
|
||||||
infix `|` := dvd
|
|
||||||
|
|
||||||
theorem dvd.intro [s : has_dvd A] {a b c : A} : a * b = c → a | c := !has_dvd.dvd_intro
|
|
||||||
|
|
||||||
theorem dvd.ex [s : has_dvd A] {a b : A} : a | b → ∃c, a * c = b := !has_dvd.dvd_ex
|
|
||||||
|
|
||||||
theorem dvd.elim [s : has_dvd A] {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
|
|
||||||
exists.elim (dvd.ex H₁) H₂
|
|
||||||
|
|
||||||
structure comm_semiring_dvd [class] (A : Type) extends comm_semiring A, has_dvd A
|
|
||||||
|
|
||||||
section comm_semiring_dvd
|
|
||||||
|
|
||||||
variables [s : comm_semiring_dvd A] (a b c : A)
|
|
||||||
include s
|
include s
|
||||||
|
|
||||||
|
definition dvd (a b : A) : Prop := ∃c, a * c = b
|
||||||
|
infix `|` := dvd
|
||||||
|
|
||||||
|
theorem dvd.intro {a b c : A} (H : a * b = c) : a | c :=
|
||||||
|
exists.intro _ H
|
||||||
|
|
||||||
|
theorem dvd.ex {a b : A} (H : a | b) : ∃c, a * c = b := H
|
||||||
|
|
||||||
|
theorem dvd.elim {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
|
||||||
|
exists.elim H₁ H₂
|
||||||
|
|
||||||
|
|
||||||
theorem dvd.refl : a | a := dvd.intro (!mul.right_id)
|
theorem dvd.refl : a | a := dvd.intro (!mul.right_id)
|
||||||
|
|
||||||
theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
|
theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
|
||||||
|
@ -137,7 +132,7 @@ section comm_semiring_dvd
|
||||||
(take e, assume Haec : a * e = c,
|
(take e, assume Haec : a * e = c,
|
||||||
dvd.intro (show a * (d + e) = b + c, from Hadb ▸ Haec ▸ left_distrib a d e)))
|
dvd.intro (show a * (d + e) = b + c, from Hadb ▸ Haec ▸ left_distrib a d e)))
|
||||||
|
|
||||||
end comm_semiring_dvd
|
end comm_semiring
|
||||||
|
|
||||||
|
|
||||||
/- ring -/
|
/- ring -/
|
||||||
|
@ -239,20 +234,9 @@ section
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
structure comm_ring_dvd [class] (A : Type) extends comm_ring A, has_dvd A
|
|
||||||
|
|
||||||
definition comm_ring_dvd.to_comm_semiring_dvd [instance] [s : comm_ring_dvd A] :
|
|
||||||
comm_semiring_dvd A :=
|
|
||||||
comm_semiring_dvd.mk comm_ring_dvd.add comm_ring_dvd.add_assoc (@comm_ring_dvd.zero A s)
|
|
||||||
comm_ring_dvd.add_left_id comm_ring_dvd.add_right_id comm_ring_dvd.add_comm
|
|
||||||
comm_ring_dvd.mul comm_ring_dvd.mul_assoc (@comm_ring_dvd.one A s) comm_ring_dvd.mul_left_id
|
|
||||||
comm_ring_dvd.mul_right_id comm_ring_dvd.left_distrib comm_ring_dvd.right_distrib
|
|
||||||
zero_mul_eq mul_zero_eq (@comm_ring_dvd.zero_ne_one A s) comm_ring_dvd.mul_comm
|
|
||||||
comm_ring_dvd.dvd (@comm_ring_dvd.dvd_intro A s) (@comm_ring_dvd.dvd_ex A s)
|
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
||||||
variables [s : comm_ring_dvd A] (a b c d e : A)
|
variables [s : comm_ring A] (a b c d e : A)
|
||||||
include s
|
include s
|
||||||
|
|
||||||
theorem dvd_neg_iff_dvd : a | -b ↔ a | b :=
|
theorem dvd_neg_iff_dvd : a | -b ↔ a | b :=
|
||||||
|
@ -307,7 +291,7 @@ theorem eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a
|
||||||
(H : a * b = 0) :
|
(H : a * b = 0) :
|
||||||
a = 0 ∨ b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H
|
a = 0 ∨ b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H
|
||||||
|
|
||||||
structure integral_domain [class] (A : Type) extends comm_ring_dvd A, no_zero_divisors A
|
structure integral_domain [class] (A : Type) extends comm_ring A, no_zero_divisors A
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue