refactor(library/algebra/ring): make dvd a definition

This commit is contained in:
Jeremy Avigad 2014-12-22 12:21:53 -05:00
parent 264c88d332
commit da7a403b6c

View file

@ -53,28 +53,23 @@ structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
/- abstract divisibility -/ /- abstract divisibility -/
structure has_dvd [class] (A : Type) extends has_mul A := section comm_semiring
(dvd : A → A → Prop)
(dvd_intro : ∀a b c, mul a b = c → dvd a c)
(dvd_ex : ∀ a b, dvd a b → ∃c, mul a c = b)
definition dvd [s : has_dvd A] (a b : A) : Prop := has_dvd.dvd a b variables [s : comm_semiring A] (a b c : A)
infix `|` := dvd
theorem dvd.intro [s : has_dvd A] {a b c : A} : a * b = c → a | c := !has_dvd.dvd_intro
theorem dvd.ex [s : has_dvd A] {a b : A} : a | b → ∃c, a * c = b := !has_dvd.dvd_ex
theorem dvd.elim [s : has_dvd A] {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
exists.elim (dvd.ex H₁) H₂
structure comm_semiring_dvd [class] (A : Type) extends comm_semiring A, has_dvd A
section comm_semiring_dvd
variables [s : comm_semiring_dvd A] (a b c : A)
include s include s
definition dvd (a b : A) : Prop := ∃c, a * c = b
infix `|` := dvd
theorem dvd.intro {a b c : A} (H : a * b = c) : a | c :=
exists.intro _ H
theorem dvd.ex {a b : A} (H : a | b) : ∃c, a * c = b := H
theorem dvd.elim {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
exists.elim H₁ H₂
theorem dvd.refl : a | a := dvd.intro (!mul.right_id) theorem dvd.refl : a | a := dvd.intro (!mul.right_id)
theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c := theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
@ -137,7 +132,7 @@ section comm_semiring_dvd
(take e, assume Haec : a * e = c, (take e, assume Haec : a * e = c,
dvd.intro (show a * (d + e) = b + c, from Hadb ▸ Haec ▸ left_distrib a d e))) dvd.intro (show a * (d + e) = b + c, from Hadb ▸ Haec ▸ left_distrib a d e)))
end comm_semiring_dvd end comm_semiring
/- ring -/ /- ring -/
@ -239,20 +234,9 @@ section
end end
structure comm_ring_dvd [class] (A : Type) extends comm_ring A, has_dvd A
definition comm_ring_dvd.to_comm_semiring_dvd [instance] [s : comm_ring_dvd A] :
comm_semiring_dvd A :=
comm_semiring_dvd.mk comm_ring_dvd.add comm_ring_dvd.add_assoc (@comm_ring_dvd.zero A s)
comm_ring_dvd.add_left_id comm_ring_dvd.add_right_id comm_ring_dvd.add_comm
comm_ring_dvd.mul comm_ring_dvd.mul_assoc (@comm_ring_dvd.one A s) comm_ring_dvd.mul_left_id
comm_ring_dvd.mul_right_id comm_ring_dvd.left_distrib comm_ring_dvd.right_distrib
zero_mul_eq mul_zero_eq (@comm_ring_dvd.zero_ne_one A s) comm_ring_dvd.mul_comm
comm_ring_dvd.dvd (@comm_ring_dvd.dvd_intro A s) (@comm_ring_dvd.dvd_ex A s)
section section
variables [s : comm_ring_dvd A] (a b c d e : A) variables [s : comm_ring A] (a b c d e : A)
include s include s
theorem dvd_neg_iff_dvd : a | -b ↔ a | b := theorem dvd_neg_iff_dvd : a | -b ↔ a | b :=
@ -307,7 +291,7 @@ theorem eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a
(H : a * b = 0) : (H : a * b = 0) :
a = 0 b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H a = 0 b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H
structure integral_domain [class] (A : Type) extends comm_ring_dvd A, no_zero_divisors A structure integral_domain [class] (A : Type) extends comm_ring A, no_zero_divisors A
section section