refactor(library/data/nat/sub): cleanup 'max' theorems
This commit is contained in:
parent
e77cd59368
commit
dbb3b7c72a
1 changed files with 8 additions and 4 deletions
|
@ -368,13 +368,17 @@ sub_split
|
||||||
definition max (n m : ℕ) : ℕ := n + (m - n)
|
definition max (n m : ℕ) : ℕ := n + (m - n)
|
||||||
definition min (n m : ℕ) : ℕ := m - (m - n)
|
definition min (n m : ℕ) : ℕ := m - (m - n)
|
||||||
|
|
||||||
theorem max_le {n m : ℕ} (H : n ≤ m) : n + (m - n) = m := add_sub_le H
|
theorem max_le {n m : ℕ} (H : n ≤ m) : max n m = m :=
|
||||||
|
add_sub_le H
|
||||||
|
|
||||||
theorem max_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n := add_sub_ge H
|
theorem max_ge {n m : ℕ} (H : n ≥ m) : max n m = n :=
|
||||||
|
add_sub_ge H
|
||||||
|
|
||||||
theorem left_le_max (n m : ℕ) : n ≤ n + (m - n) := !le_add_sub_left
|
theorem left_le_max (n m : ℕ) : n ≤ max n m :=
|
||||||
|
!le_add_sub_left
|
||||||
|
|
||||||
theorem right_le_max (n m : ℕ) : m ≤ max n m := !le_add_sub_right
|
theorem right_le_max (n m : ℕ) : m ≤ max n m :=
|
||||||
|
!le_add_sub_right
|
||||||
|
|
||||||
-- ### absolute difference
|
-- ### absolute difference
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue