feat(library/data): define unordered pairs using quotients
This commit is contained in:
parent
3951b50282
commit
dbe54c4fb5
1 changed files with 99 additions and 0 deletions
99
library/data/uprod.lean
Normal file
99
library/data/uprod.lean
Normal file
|
@ -0,0 +1,99 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: data.uprod
|
||||
Author: Leonardo de Moura
|
||||
|
||||
Unordered pairs
|
||||
-/
|
||||
import data.prod logic.identities algebra.function
|
||||
open prod prod.ops quot function
|
||||
|
||||
private definition eqv {A : Type} (p₁ p₂ : A × A) : Prop :=
|
||||
p₁ = p₂ ∨ swap p₁ = p₂
|
||||
|
||||
infix `~` := eqv -- this is "~"
|
||||
|
||||
private theorem eqv.refl {A : Type} : ∀ p : A × A, p ~ p :=
|
||||
take p, or.inl rfl
|
||||
|
||||
private theorem eqv.symm {A : Type} : ∀ p₁ p₂ : A × A, p₁ ~ p₂ → p₂ ~ p₁ :=
|
||||
take p₁ p₂ h, or.elim h
|
||||
(λ e, by rewrite e; apply eqv.refl)
|
||||
(λ e, begin esimp [eqv], rewrite [-e, swap_swap], exact (or.inr rfl) end)
|
||||
|
||||
private theorem eqv.trans {A : Type} : ∀ p₁ p₂ p₃ : A × A, p₁ ~ p₂ → p₂ ~ p₃ → p₁ ~ p₃ :=
|
||||
take p₁ p₂ p₃ h₁ h₂, or.elim h₁
|
||||
(λ e₁₂, or.elim h₂
|
||||
(λ e₂₃, by rewrite [e₁₂, e₂₃]; apply eqv.refl)
|
||||
(λ es₂₃, begin esimp [eqv], rewrite -es₂₃, exact (or.inr (congr_arg swap e₁₂)) end))
|
||||
(λ es₁₂, or.elim h₂
|
||||
(λ e₂₃, begin esimp [eqv], rewrite es₁₂, exact (or.inr e₂₃) end)
|
||||
(λ es₂₃, begin esimp [eqv], rewrite [-es₁₂ at es₂₃, swap_swap at es₂₃], exact (or.inl es₂₃) end))
|
||||
|
||||
private theorem is_equivalence (A : Type) : equivalence (@eqv A) :=
|
||||
mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A)
|
||||
|
||||
definition uprod.setoid [instance] (A : Type) : setoid (A × A) :=
|
||||
setoid.mk (@eqv A) (is_equivalence A)
|
||||
|
||||
definition uprod (A : Type) : Type :=
|
||||
quot (uprod.setoid A)
|
||||
|
||||
namespace uprod
|
||||
definition mk {A : Type} (a b : A) : uprod A :=
|
||||
⟦(a, b)⟧
|
||||
|
||||
theorem mk_eq_mk {A : Type} (a b : A) : mk a b = mk b a :=
|
||||
quot.sound (or.inr rfl)
|
||||
|
||||
private definition mem_fn {A : Type} (a : A) : A × A → Prop
|
||||
| (a₁, a₂) := a = a₁ ∨ a = a₂
|
||||
|
||||
private lemma mem_swap {A : Type} {a : A} : ∀ {p : A × A}, mem_fn a p ↔ mem_fn a (swap p)
|
||||
| (a₁, a₂) := iff.intro
|
||||
(λ l : a = a₁ ∨ a = a₂, or.swap l)
|
||||
(λ r : a = a₂ ∨ a = a₁, or.swap r)
|
||||
|
||||
private lemma mem_coherent {A : Type} : ∀ {p₁ p₂ : A × A} (a : A), p₁ ~ p₂ → mem_fn a p₁ = mem_fn a p₂
|
||||
| (a₁, b₁) (a₂, b₂) a h :=
|
||||
or.elim h
|
||||
(λ e, by rewrite e)
|
||||
(λ es, begin rewrite -es, apply propext, rewrite (propext mem_swap) end)
|
||||
|
||||
definition mem {A : Type} (a : A) (u : uprod A) : Prop :=
|
||||
quot.lift_on u (λ p, mem_fn a p) (λ p₁ p₂ e, mem_coherent a e)
|
||||
|
||||
infix `∈` := mem
|
||||
|
||||
theorem mem_mk_left {A : Type} (a b : A) : a ∈ mk a b :=
|
||||
or.inl rfl
|
||||
|
||||
theorem mem_mk_right {A : Type} (a b : A) : b ∈ mk a b :=
|
||||
or.inr rfl
|
||||
|
||||
theorem mem_or_mem_of_mem_mk {A : Type} {a b c : A} : c ∈ mk a b → c = a ∨ c = b :=
|
||||
λ h, h
|
||||
|
||||
private definition map_fn {A B : Type} (f : A → B) : A × A → uprod B
|
||||
| (a₁, a₂) := mk (f a₁) (f a₂)
|
||||
|
||||
private lemma map_coherent {A B : Type} (f : A → B) : ∀ {p₁ p₂ : A × A}, p₁ ~ p₂ → map_fn f p₁ = map_fn f p₂
|
||||
| (a₁, b₁) (a₂, b₂) h :=
|
||||
or.elim h
|
||||
(λ e, by rewrite e)
|
||||
(λ es, begin rewrite -es, apply quot.sound, exact (or.inr rfl) end)
|
||||
|
||||
definition map {A B : Type} (f : A → B) (u : uprod A) : uprod B :=
|
||||
quot.lift_on u (λ p, map_fn f p) (λ p₁ p₂ c, map_coherent f c)
|
||||
|
||||
theorem mem_map_mk_left {A B : Type} (f : A → B) (a₁ a₂ : A) : f a₁ ∈ map f (mk a₁ a₂) :=
|
||||
or.inl rfl
|
||||
|
||||
theorem mem_map_mk_right {A B : Type} (f : A → B) (a₁ a₂ : A) : f a₂ ∈ map f (mk a₁ a₂) :=
|
||||
or.inr rfl
|
||||
|
||||
theorem map_map {A B C : Type} (g : B → C) (f : A → B) (u : uprod A) : map g (map f u) = map (g ∘ f) u :=
|
||||
quot.induction_on u (λ p : A × A, begin cases p, apply rfl end)
|
||||
end uprod
|
Loading…
Reference in a new issue