feat(hott/homotopy): general connectivity elimination and the wedge connectivity lemma
This commit is contained in:
parent
87ec5ada07
commit
dcb35008e1
6 changed files with 208 additions and 28 deletions
|
@ -22,7 +22,7 @@ The rows indicate the chapters, the columns the sections.
|
|||
| Ch 5 | - | . | ½ | - | - | . | . | ½ | | | | | | | |
|
||||
| Ch 6 | . | + | + | + | + | ½ | ½ | + | ¾ | ¼ | ¾ | + | . | | |
|
||||
| Ch 7 | + | + | + | - | ¾ | - | - | | | | | | | | |
|
||||
| Ch 8 | ¾ | ¾ | - | - | - | - | - | - | - | - | | | | | |
|
||||
| Ch 8 | ¾ | ¾ | - | - | ¼ | ¼ | - | - | - | - | | | | | |
|
||||
| Ch 9 | ¾ | + | + | ½ | ¾ | ½ | - | - | - | | | | | | |
|
||||
| Ch 10 | - | - | - | - | - | | | | | | | | | | |
|
||||
| Ch 11 | - | - | - | - | - | - | | | | | | | | | |
|
||||
|
@ -145,8 +145,8 @@ Unless otherwise noted, the files are in the folder [homotopy](homotopy/homotopy
|
|||
- 8.2 (Connectedness of suspensions): [homotopy.connectedness](homotopy/connectedness.hlean) (different proof)
|
||||
- 8.3 (πk≤n of an n-connected space and π_{k<n}(S^n)): not formalized
|
||||
- 8.4 (Fiber sequences and the long exact sequence): not formalized
|
||||
- 8.5 (The Hopf fibration): not formalized
|
||||
- 8.6 (The Freudenthal suspension theorem): not formalized
|
||||
- 8.5 (The Hopf fibration): [homotopy.circle](homotopy/circle.hlean) (H-space structure on the circle, Lemma 8.5.8), [homotopy.join](homotopy/join.hlean) (join is associative, Lemma 8.5.9), the rest is not formalized
|
||||
- 8.6 (The Freudenthal suspension theorem): [homotopy.connectedness](homotopy/connectedness.hlean) (Lemma 8.6.1), [homotopy.wedge](homotopy/wedge.hlean) (Wedge connectivity, Lemma 8.6.2), the rest is not formalized
|
||||
- 8.7 (The van Kampen theorem): not formalized
|
||||
- 8.8 (Whitehead’s theorem and Whitehead’s principle): not formalized
|
||||
- 8.9 (A general statement of the encode-decode method): not formalized
|
||||
|
|
|
@ -269,4 +269,30 @@ namespace circle
|
|||
induction H', reflexivity}
|
||||
end
|
||||
|
||||
definition circle_mul [reducible] (x y : S¹) : S¹ :=
|
||||
begin
|
||||
induction x,
|
||||
{ induction y,
|
||||
{ exact base },
|
||||
{ exact loop } },
|
||||
{ induction y,
|
||||
{ exact loop },
|
||||
{ apply eq_pathover, rewrite elim_loop,
|
||||
apply square_of_eq, reflexivity } }
|
||||
end
|
||||
|
||||
definition circle_mul_base (x : S¹) : circle_mul x base = x :=
|
||||
begin
|
||||
induction x,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, krewrite [elim_loop,ap_id], apply hrefl }
|
||||
end
|
||||
|
||||
definition circle_base_mul (x : S¹) : circle_mul base x = x :=
|
||||
begin
|
||||
induction x,
|
||||
{ reflexivity },
|
||||
{ apply eq_pathover, krewrite [elim_loop,ap_id], apply hrefl }
|
||||
end
|
||||
|
||||
end circle
|
||||
|
|
|
@ -3,9 +3,9 @@ Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Ulrik Buchholtz
|
||||
-/
|
||||
import types.trunc types.arrow_2 types.fiber .susp
|
||||
import types.trunc types.eq types.arrow_2 types.fiber .susp
|
||||
|
||||
open eq is_trunc is_equiv nat equiv trunc function fiber
|
||||
open eq is_trunc is_equiv nat equiv trunc function fiber funext
|
||||
|
||||
namespace homotopy
|
||||
|
||||
|
@ -29,33 +29,73 @@ namespace homotopy
|
|||
parameters {n : trunc_index} {A B : Type} {h : A → B}
|
||||
(H : is_conn_map n h) (P : B → n -Type)
|
||||
|
||||
private definition helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b :=
|
||||
private definition rec.helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b :=
|
||||
λt b, trunc.rec (λx, point_eq x ▸ t (point x))
|
||||
|
||||
private definition g : (Πa : A, P (h a)) → (Πb : B, P b) :=
|
||||
λt b, helper t b (@center (trunc n (fiber h b)) (H b))
|
||||
private definition rec.g : (Πa : A, P (h a)) → (Πb : B, P b) :=
|
||||
λt b, rec.helper t b (@center (trunc n (fiber h b)) (H b))
|
||||
|
||||
-- induction principle for n-connected maps (Lemma 7.5.7)
|
||||
definition rec : is_equiv (λs : Πb : B, P b, λa : A, s (h a)) :=
|
||||
adjointify (λs a, s (h a)) g
|
||||
protected definition rec : is_equiv (λs : Πb : B, P b, λa : A, s (h a)) :=
|
||||
adjointify (λs a, s (h a)) rec.g
|
||||
begin
|
||||
intro t, apply eq_of_homotopy, intro a, unfold g, unfold helper,
|
||||
intro t, apply eq_of_homotopy, intro a, unfold rec.g, unfold rec.helper,
|
||||
rewrite [@center_eq _ (H (h a)) (tr (fiber.mk a idp))],
|
||||
end
|
||||
begin
|
||||
intro k, apply eq_of_homotopy, intro b, unfold g,
|
||||
intro k, apply eq_of_homotopy, intro b, unfold rec.g,
|
||||
generalize (@center _ (H b)), apply trunc.rec, apply fiber.rec,
|
||||
intros a p, induction p, reflexivity
|
||||
end
|
||||
|
||||
definition elim : (Πa : A, P (h a)) → (Πb : B, P b) :=
|
||||
protected definition elim : (Πa : A, P (h a)) → (Πb : B, P b) :=
|
||||
@is_equiv.inv _ _ (λs a, s (h a)) rec
|
||||
|
||||
definition elim_β : Πf : (Πa : A, P (h a)), Πa : A, elim f (h a) = f a :=
|
||||
protected definition elim_β : Πf : (Πa : A, P (h a)), Πa : A, elim f (h a) = f a :=
|
||||
λf, apd10 (@is_equiv.right_inv _ _ (λs a, s (h a)) rec f)
|
||||
|
||||
end
|
||||
|
||||
section
|
||||
parameters {n k : trunc_index} {A B : Type} {f : A → B}
|
||||
(H : is_conn_map n f) (P : B → (n +2+ k)-Type)
|
||||
|
||||
include H
|
||||
-- Lemma 8.6.1
|
||||
proposition elim_general (t : Πa : A, P (f a))
|
||||
: is_trunc k (fiber (λs : (Πb : B, P b), (λa, s (f a))) t) :=
|
||||
begin
|
||||
induction k with k IH,
|
||||
{ apply is_contr_fiber_of_is_equiv, apply is_conn_map.rec, exact H },
|
||||
{ apply is_trunc_succ_intro,
|
||||
intros x y, cases x with g p, cases y with h q,
|
||||
assert e : fiber (λr : g ~ h, (λa, r (f a))) (apd10 (p ⬝ q⁻¹))
|
||||
≃ (fiber.mk g p = fiber.mk h q
|
||||
:> fiber (λs : (Πb, P b), (λa, s (f a))) t),
|
||||
{ apply equiv.trans !fiber.sigma_char,
|
||||
assert e' : Πr : g ~ h,
|
||||
((λa, r (f a)) = apd10 (p ⬝ q⁻¹))
|
||||
≃ (ap (λv, (λa, v (f a))) (eq_of_homotopy r) ⬝ q = p),
|
||||
{ intro r,
|
||||
refine equiv.trans _ (eq_con_inv_equiv_con_eq q p
|
||||
(ap (λv a, v (f a)) (eq_of_homotopy r))),
|
||||
rewrite [-(ap (λv a, v (f a)) (apd10_eq_of_homotopy r))],
|
||||
rewrite [-(apd10_ap_precompose_dependent f (eq_of_homotopy r))],
|
||||
apply equiv.symm,
|
||||
apply eq_equiv_fn_eq (@apd10 A (λa, P (f a)) (λa, g (f a)) (λa, h (f a))) },
|
||||
apply equiv.trans (sigma.sigma_equiv_sigma_id e'), clear e',
|
||||
apply equiv.trans (equiv.symm (sigma.sigma_equiv_sigma_left
|
||||
eq_equiv_homotopy)),
|
||||
apply equiv.symm, apply equiv.trans !fiber_eq_equiv,
|
||||
apply sigma.sigma_equiv_sigma_id, intro r,
|
||||
apply eq_equiv_eq_symm },
|
||||
apply @is_trunc_equiv_closed _ _ k e, clear e,
|
||||
apply IH (λb : B, trunctype.mk (g b = h b)
|
||||
(@is_trunc_eq (P b) (n +2+ k) (trunctype.struct (P b))
|
||||
(g b) (h b))) }
|
||||
end
|
||||
end
|
||||
|
||||
section
|
||||
universe variables u v
|
||||
parameters {n : trunc_index} {A : Type.{u}} {B : Type.{v}} {h : A → B}
|
||||
|
@ -113,6 +153,44 @@ namespace homotopy
|
|||
|
||||
end
|
||||
|
||||
-- as special case we get elimination principles for pointed connected types
|
||||
namespace is_conn
|
||||
open pointed Pointed unit
|
||||
section
|
||||
parameters {n : trunc_index} {A : Type*}
|
||||
[H : is_conn n .+1 A] (P : A → n -Type)
|
||||
|
||||
include H
|
||||
protected definition rec : is_equiv (λs : Πa : A, P a, s (Point A)) :=
|
||||
@is_equiv_compose
|
||||
(Πa : A, P a) (unit → P (Point A)) (P (Point A))
|
||||
(λs x, s (Point A)) (λf, f unit.star)
|
||||
(is_conn_map.rec (is_conn_map_from_unit n A (Point A)) P)
|
||||
(to_is_equiv (unit.unit_imp_equiv (P (Point A))))
|
||||
|
||||
protected definition elim : P (Point A) → (Πa : A, P a) :=
|
||||
@is_equiv.inv _ _ (λs, s (Point A)) rec
|
||||
|
||||
protected definition elim_β (p : P (Point A)) : elim p (Point A) = p :=
|
||||
@is_equiv.right_inv _ _ (λs, s (Point A)) rec p
|
||||
end
|
||||
|
||||
section
|
||||
parameters {n k : trunc_index} {A : Type*}
|
||||
[H : is_conn n .+1 A] (P : A → (n +2+ k)-Type)
|
||||
|
||||
include H
|
||||
proposition elim_general (p : P (Point A))
|
||||
: is_trunc k (fiber (λs : (Πa : A, P a), s (Point A)) p) :=
|
||||
@is_trunc_equiv_closed
|
||||
(fiber (λs x, s (Point A)) (λx, p))
|
||||
(fiber (λs, s (Point A)) p)
|
||||
k
|
||||
(equiv.symm (fiber.equiv_postcompose (to_fun (unit.unit_imp_equiv (P (Point A))))))
|
||||
(is_conn_map.elim_general (is_conn_map_from_unit n A (Point A)) P (λx, p))
|
||||
end
|
||||
end is_conn
|
||||
|
||||
-- Lemma 7.5.2
|
||||
definition minus_one_conn_of_surjective {A B : Type} (f : A → B)
|
||||
: is_surjective f → is_conn_map -1 f :=
|
||||
|
|
|
@ -1,22 +1,19 @@
|
|||
/-
|
||||
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Jakob von Raumer
|
||||
Authors: Jakob von Raumer, Ulrik Buchholtz
|
||||
|
||||
The Wedge Sum of Two Pointed Types
|
||||
-/
|
||||
import hit.pointed_pushout
|
||||
import hit.pointed_pushout .connectedness
|
||||
|
||||
open eq pushout pointed Pointed
|
||||
|
||||
definition Wedge (A B : Type*) : Type* := Pushout (pconst Unit A) (pconst Unit B)
|
||||
|
||||
namespace wedge
|
||||
section
|
||||
variables (A B : Type*)
|
||||
|
||||
definition Wedge : Type* := Pushout (pconst Unit A) (pconst Unit B)
|
||||
|
||||
-- TODO maybe find a cleaner proof
|
||||
protected definition unit : A ≃* Wedge Unit A :=
|
||||
protected definition unit (A : Type*) : A ≃* Wedge Unit A :=
|
||||
begin
|
||||
fconstructor,
|
||||
{ fapply pmap.mk, intro a, apply pinr a, apply respect_pt },
|
||||
|
@ -30,6 +27,52 @@ namespace wedge
|
|||
apply con.left_inv,
|
||||
intro a, reflexivity },
|
||||
end
|
||||
end wedge
|
||||
|
||||
open trunc is_trunc function homotopy
|
||||
namespace wedge_extension
|
||||
section
|
||||
-- The wedge connectivity lemma (Lemma 8.6.2)
|
||||
parameters {A B : Type*} (n m : trunc_index)
|
||||
[cA : is_conn n .+2 A] [cB : is_conn m .+2 B]
|
||||
(P : A → B → (m .+1 +2+ n .+1)-Type)
|
||||
(f : Πa : A, P a (Point B))
|
||||
(g : Πb : B, P (Point A) b)
|
||||
(p : f (Point A) = g (Point B))
|
||||
|
||||
include cA cB
|
||||
private definition Q (a : A) : (n .+1)-Type :=
|
||||
trunctype.mk
|
||||
(fiber (λs : (Πb : B, P a b), s (Point B)) (f a))
|
||||
(is_conn.elim_general (P a) (f a))
|
||||
|
||||
private definition Q_sec : Πa : A, Q a :=
|
||||
is_conn.elim Q (fiber.mk g p⁻¹)
|
||||
|
||||
protected definition ext : Π(a : A)(b : B), P a b :=
|
||||
λa, fiber.point (Q_sec a)
|
||||
|
||||
protected definition β_left (a : A) : ext a (Point B) = f a :=
|
||||
fiber.point_eq (Q_sec a)
|
||||
|
||||
private definition coh_aux : Σq : ext (Point A) = g,
|
||||
β_left (Point A) = ap (λs : (Πb : B, P (Point A) b), s (Point B)) q ⬝ p⁻¹ :=
|
||||
equiv.to_fun (fiber.fiber_eq_equiv (Q_sec (Point A)) (fiber.mk g p⁻¹))
|
||||
(is_conn.elim_β Q (fiber.mk g p⁻¹))
|
||||
|
||||
protected definition β_right (b : B) : ext (Point A) b = g b :=
|
||||
apd10 (sigma.pr1 coh_aux) b
|
||||
|
||||
private definition lem : β_left (Point A) = β_right (Point B) ⬝ p⁻¹ :=
|
||||
begin
|
||||
unfold β_right, unfold β_left,
|
||||
krewrite (apd10_eq_ap_eval (sigma.pr1 coh_aux) (Point B)),
|
||||
exact sigma.pr2 coh_aux,
|
||||
end
|
||||
|
||||
protected definition coh
|
||||
: (β_left (Point A))⁻¹ ⬝ β_right (Point B) = p :=
|
||||
by rewrite [lem,con_inv,inv_inv,con.assoc,con.left_inv]
|
||||
|
||||
end
|
||||
end wedge
|
||||
end wedge_extension
|
||||
|
|
|
@ -233,6 +233,11 @@ namespace eq
|
|||
definition apd10' [unfold 6] {f g : Πx, P x} (a : A) (H : f = g) : f a = g a :=
|
||||
eq.rec_on H idp
|
||||
|
||||
--apd10 is also ap evaluation
|
||||
definition apd10_eq_ap_eval {f g : Πx, P x} (H : f = g) (a : A)
|
||||
: apd10 H a = ap (λs : Πx, P x, s a) H :=
|
||||
eq.rec_on H idp
|
||||
|
||||
definition ap10 [reducible] [unfold 5] {f g : A → B} (H : f = g) : f ~ g := apd10 H
|
||||
|
||||
definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y :=
|
||||
|
@ -525,12 +530,17 @@ namespace eq
|
|||
ap (λh, h ∘ f) p = transport (λh : B → C, g ∘ f = h ∘ f) p idp :=
|
||||
eq.rec_on p idp
|
||||
|
||||
definition apd10_ap_precompose (f : A → B) (g g' : B → C) (p : g = g') (a : A) :
|
||||
apd10 (ap (λh : B → C, h ∘ f) p) a = apd10 p (f a) :=
|
||||
definition apd10_ap_precompose (f : A → B) (g g' : B → C) (p : g = g') :
|
||||
apd10 (ap (λh : B → C, h ∘ f) p) = λa, apd10 p (f a) :=
|
||||
eq.rec_on p idp
|
||||
|
||||
definition apd10_ap_postcompose (f : B → C) (g g' : A → B) (p : g = g') (a : A) :
|
||||
apd10 (ap (λh : A → B, f ∘ h) p) a = ap f (apd10 p a) :=
|
||||
definition apd10_ap_precompose_dependent {C : B → Type}
|
||||
(f : A → B) {g g' : Πb : B, C b} (p : g = g')
|
||||
: apd10 (ap (λ(h : (Πb : B, C b))(a : A), h (f a)) p) = λa, apd10 p (f a) :=
|
||||
eq.rec_on p idp
|
||||
|
||||
definition apd10_ap_postcompose (f : B → C) (g g' : A → B) (p : g = g') :
|
||||
apd10 (ap (λh : A → B, f ∘ h) p) = λa, ap f (apd10 p a) :=
|
||||
eq.rec_on p idp
|
||||
|
||||
-- A special case of [tr_compose] which seems to come up a lot.
|
||||
|
|
|
@ -68,8 +68,31 @@ namespace fiber
|
|||
|
||||
definition is_trunc_fun [reducible] (n : trunc_index) (f : A → B) :=
|
||||
Π(b : B), is_trunc n (fiber f b)
|
||||
|
||||
definition is_contr_fun [reducible] (f : A → B) := is_trunc_fun -2 f
|
||||
|
||||
-- pre and post composition with equivalences
|
||||
open function
|
||||
protected definition equiv_postcompose {B' : Type} (g : B → B') [H : is_equiv g]
|
||||
: fiber (g ∘ f) (g b) ≃ fiber f b :=
|
||||
calc
|
||||
fiber (g ∘ f) (g b) ≃ Σa : A, g (f a) = g b : fiber.sigma_char
|
||||
... ≃ Σa : A, f a = b : begin
|
||||
apply sigma_equiv_sigma_id, intro a,
|
||||
apply equiv.symm, apply eq_equiv_fn_eq
|
||||
end
|
||||
... ≃ fiber f b : fiber.sigma_char
|
||||
|
||||
protected definition equiv_precompose {A' : Type} (g : A' → A) [H : is_equiv g]
|
||||
: fiber (f ∘ g) b ≃ fiber f b :=
|
||||
calc
|
||||
fiber (f ∘ g) b ≃ Σa' : A', f (g a') = b : fiber.sigma_char
|
||||
... ≃ Σa : A, f a = b : begin
|
||||
apply sigma_equiv_sigma (equiv.mk g H),
|
||||
intro a', apply erfl
|
||||
end
|
||||
... ≃ fiber f b : fiber.sigma_char
|
||||
|
||||
end fiber
|
||||
|
||||
open unit is_trunc
|
||||
|
|
Loading…
Reference in a new issue