fix(init/nat): remove exit

This commit is contained in:
Floris van Doorn 2015-06-04 20:23:44 -04:00
parent f995e5ea48
commit dce257bccb

View file

@ -286,262 +286,4 @@ namespace nat
(le.refl a)
(λ b₁ ih, le.trans !pred_le ih)
end nat
exit
definition measure {A : Type} (f : A → nat) : A → A → Prop :=
inv_image lt f
definition measure.wf {A : Type} (f : A → nat) : well_founded (measure f) :=
inv_image.wf f lt.wf
theorem not_lt_zero (a : nat) : ¬ a < zero :=
have aux : ∀ {b}, a < b → b = zero → false, from
λ b H, lt.cases_on H
(by contradiction)
(by contradiction),
λ H, aux H rfl
theorem zero_lt_succ (a : nat) : zero < succ a :=
nat.rec_on a
(lt.base zero)
(λ a (hlt : zero < succ a), lt.step hlt)
theorem lt.trans [trans] {a b c : nat} (H₁ : a < b) (H₂ : b < c) : a < c :=
have aux : a < b → a < c, from
lt.rec_on H₂
(λ h₁, lt.step h₁)
(λ b₁ bb₁ ih h₁, lt.step (ih h₁)),
aux H₁
theorem succ_lt_succ {a b : nat} (H : a < b) : succ a < succ b :=
lt.rec_on H
(lt.base (succ a))
(λ b hlt ih, lt.trans ih (lt.base (succ b)))
theorem lt_of_succ_lt {a b : nat} (H : succ a < b) : a < b :=
lt.rec_on H
(lt.step (lt.base a))
(λ b h ih, lt.step ih)
theorem lt_of_succ_lt_succ {a b : nat} (H : succ a < succ b) : a < b :=
have aux : pred (succ a) < pred (succ b), from
lt.rec_on H
(lt.base a)
(λ (b : nat) (hlt : succ a < b) ih,
show pred (succ a) < pred (succ b), from
lt_of_succ_lt hlt),
aux
definition decidable_lt [instance] : decidable_rel lt :=
λ a b, nat.rec_on b
(λ (a : nat), inr (not_lt_zero a))
(λ (b₁ : nat) (ih : ∀ a, decidable (a < b₁)) (a : nat), nat.cases_on a
(inl !zero_lt_succ)
(λ a, decidable.rec_on (ih a)
(λ h_pos : a < b₁, inl (succ_lt_succ h_pos))
(λ h_neg : ¬ a < b₁,
have aux : ¬ succ a < succ b₁, from
λ h : succ a < succ b₁, h_neg (lt_of_succ_lt_succ h),
inr aux)))
a
theorem le.refl [refl] (a : nat) : a ≤ a :=
lt.base a
theorem le_of_lt {a b : nat} (H : a < b) : a ≤ b :=
lt.step H
theorem eq_or_lt_of_le {a b : nat} (H : a ≤ b) : a = b a < b :=
begin
cases H with b hlt,
apply or.inl rfl,
apply or.inr hlt
end
theorem le_of_eq_or_lt {a b : nat} (H : a = b a < b) : a ≤ b :=
or.rec_on H
(λ hl, eq.rec_on hl !le.refl)
(λ hr, le_of_lt hr)
definition decidable_le [instance] : decidable_rel le :=
λ a b, decidable_of_decidable_of_iff _ (iff.intro le_of_eq_or_lt eq_or_lt_of_le)
theorem le.rec_on {a : nat} {P : nat → Prop} {b : nat} (H : a ≤ b) (H₁ : P a) (H₂ : ∀ b, a < b → P b) : P b :=
begin
cases H with b hlt,
apply H₁,
apply H₂ b hlt
end
theorem lt.irrefl (a : nat) : ¬ a < a :=
nat.rec_on a
!not_lt_zero
(λ (a : nat) (ih : ¬ a < a) (h : succ a < succ a),
ih (lt_of_succ_lt_succ h))
theorem lt.asymm {a b : nat} (H : a < b) : ¬ b < a :=
lt.rec_on H
(λ h : succ a < a, !lt.irrefl (lt_of_succ_lt h))
(λ b hlt (ih : ¬ b < a) (h : succ b < a), ih (lt_of_succ_lt h))
theorem lt.trichotomy (a b : nat) : a < b a = b b < a :=
nat.rec_on b
(λa, nat.cases_on a
(or.inr (or.inl rfl))
(λ a₁, or.inr (or.inr !zero_lt_succ)))
(λ b₁ (ih : ∀a, a < b₁ a = b₁ b₁ < a) (a : nat), nat.cases_on a
(or.inl !zero_lt_succ)
(λ a, or.rec_on (ih a)
(λ h : a < b₁, or.inl (succ_lt_succ h))
(λ h, or.rec_on h
(λ h : a = b₁, or.inr (or.inl (eq.rec_on h rfl)))
(λ h : b₁ < a, or.inr (or.inr (succ_lt_succ h))))))
a
theorem eq_or_lt_of_not_lt {a b : nat} (hnlt : ¬ a < b) : a = b b < a :=
or.rec_on (lt.trichotomy a b)
(λ hlt, absurd hlt hnlt)
(λ h, h)
theorem lt_succ_of_le {a b : nat} (h : a ≤ b) : a < succ b :=
h
theorem lt_of_succ_le {a b : nat} (h : succ a ≤ b) : a < b :=
lt_of_succ_lt_succ h
theorem le_succ_of_le {a b : nat} (h : a ≤ b) : a ≤ succ b :=
lt.step h
theorem succ_le_of_lt {a b : nat} (h : a < b) : succ a ≤ b :=
succ_lt_succ h
theorem le.trans [trans] {a b c : nat} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c :=
begin
cases h₁ with b' hlt,
apply h₂,
apply lt.trans hlt h₂
end
theorem lt_of_le_of_lt [trans] {a b c : nat} (h₁ : a ≤ b) (h₂ : b < c) : a < c :=
begin
cases h₁ with b' hlt,
apply h₂,
apply lt.trans hlt h₂
end
theorem lt_of_lt_of_le [trans] {a b c : nat} (h₁ : a < b) (h₂ : b ≤ c) : a < c :=
begin
cases h₁ with b' hlt,
apply lt_of_succ_lt_succ h₂,
apply lt.trans hlt (lt_of_succ_lt_succ h₂)
end
definition max (a b : nat) : nat :=
if a < b then b else a
definition min (a b : nat) : nat :=
if a < b then a else b
theorem max_self (a : nat) : max a a = a :=
eq.rec_on !if_t_t rfl
theorem max_eq_right {a b : nat} (H : a < b) : max a b = b :=
if_pos H
theorem max_eq_left {a b : nat} (H : ¬ a < b) : max a b = a :=
if_neg H
theorem eq_max_right {a b : nat} (H : a < b) : b = max a b :=
eq.rec_on (max_eq_right H) rfl
theorem eq_max_left {a b : nat} (H : ¬ a < b) : a = max a b :=
eq.rec_on (max_eq_left H) rfl
theorem le_max_left (a b : nat) : a ≤ max a b :=
by_cases
(λ h : a < b, le_of_lt (eq.rec_on (eq_max_right h) h))
(λ h : ¬ a < b, eq.rec_on (eq_max_left h) !le.refl)
theorem le_max_right (a b : nat) : b ≤ max a b :=
by_cases
(λ h : a < b, eq.rec_on (eq_max_right h) !le.refl)
(λ h : ¬ a < b, or.rec_on (eq_or_lt_of_not_lt h)
(λ heq, eq.rec_on heq (eq.rec_on (eq.symm (max_self a)) !le.refl))
(λ h : b < a,
have aux : a = max a b, from eq_max_left (lt.asymm h),
eq.rec_on aux (le_of_lt h)))
definition gt [reducible] a b := lt b a
definition decidable_gt [instance] : decidable_rel gt :=
_
notation a > b := gt a b
definition ge [reducible] a b := le b a
definition decidable_ge [instance] : decidable_rel ge :=
_
notation a >= b := ge a b
notation a ≥ b := ge a b
-- add is defined in init.num
definition sub (a b : nat) : nat :=
nat.rec_on b a (λ b₁ r, pred r)
notation a - b := sub a b
definition mul (a b : nat) : nat :=
nat.rec_on b zero (λ b₁ r, r + a)
notation a * b := mul a b
section
local attribute sub [reducible]
theorem succ_sub_succ_eq_sub (a b : nat) : succ a - succ b = a - b :=
nat.rec_on b
rfl
(λ b₁ (ih : succ a - succ b₁ = a - b₁),
eq.rec_on ih (eq.refl (pred (succ a - succ b₁))))
end
theorem sub_eq_succ_sub_succ (a b : nat) : a - b = succ a - succ b :=
eq.rec_on (succ_sub_succ_eq_sub a b) rfl
theorem zero_sub_eq_zero (a : nat) : zero - a = zero :=
nat.rec_on a
rfl
(λ a₁ (ih : zero - a₁ = zero),
eq.rec_on ih (eq.refl (pred (zero - a₁))))
theorem zero_eq_zero_sub (a : nat) : zero = zero - a :=
eq.rec_on (zero_sub_eq_zero a) rfl
theorem sub_lt {a b : nat} : zero < a → zero < b → a - b < a :=
have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from
λa h₁, lt.rec_on h₁
(λb h₂, lt.cases_on h₂
(lt.base zero)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ zero b₁)
(eq.rec_on (zero_eq_zero_sub b₁) (lt.base zero))))
(λa₁ apos ih b h₂, lt.cases_on h₂
(lt.base a₁)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ a₁ b₁)
(lt.trans (@ih b₁ bpos) (lt.base a₁)))),
λ h₁ h₂, aux h₁ h₂
theorem pred_le (a : nat) : pred a ≤ a :=
nat.cases_on a
(le.refl zero)
(λ a₁, le_of_lt (lt.base a₁))
theorem sub_le (a b : nat) : a - b ≤ a :=
nat.induction_on b
(le.refl a)
(λ b₁ ih, le.trans !pred_le ih)
end nat