fix(*): bugs in the type checker, inductive datatypes, and unifier
The bugs were indentified when performing the tiny change in the file tests/lean/run/group.lean
This commit is contained in:
parent
9a13bef4f3
commit
dcf7cf00ff
7 changed files with 138 additions and 159 deletions
|
@ -765,9 +765,10 @@ optional<expr> inductive_normalizer_extension::operator()(expr const & e, extens
|
||||||
return none_expr(); // it is not an eliminator
|
return none_expr(); // it is not an eliminator
|
||||||
buffer<expr> elim_args;
|
buffer<expr> elim_args;
|
||||||
get_app_args(e, elim_args);
|
get_app_args(e, elim_args);
|
||||||
if (elim_args.size() != it1->m_num_ACe + it1->m_num_indices + 1)
|
unsigned major_idx = it1->m_num_ACe + it1->m_num_indices;
|
||||||
return none_expr(); // number of arguments does not match
|
if (elim_args.size() < major_idx + 1)
|
||||||
expr intro_app = ctx.whnf(elim_args.back());
|
return none_expr(); // major premise is missing
|
||||||
|
expr intro_app = ctx.whnf(elim_args[major_idx]);
|
||||||
expr const & intro_fn = get_app_fn(intro_app);
|
expr const & intro_fn = get_app_fn(intro_app);
|
||||||
// Last argument must be a constant and an application of a constant.
|
// Last argument must be a constant and an application of a constant.
|
||||||
if (!is_constant(intro_fn))
|
if (!is_constant(intro_fn))
|
||||||
|
@ -800,11 +801,15 @@ optional<expr> inductive_normalizer_extension::operator()(expr const & e, extens
|
||||||
std::reverse(ACebu.begin(), ACebu.end());
|
std::reverse(ACebu.begin(), ACebu.end());
|
||||||
expr r = instantiate_univ_params(it2->m_comp_rhs_body, it1->m_level_names, const_levels(elim_fn));
|
expr r = instantiate_univ_params(it2->m_comp_rhs_body, it1->m_level_names, const_levels(elim_fn));
|
||||||
r = instantiate(r, ACebu.size(), ACebu.data());
|
r = instantiate(r, ACebu.size(), ACebu.data());
|
||||||
|
if (elim_args.size() > major_idx + 1) {
|
||||||
|
unsigned num_args = elim_args.size() - major_idx - 1;
|
||||||
|
r = mk_app(r, num_args, elim_args.data() + major_idx + 1);
|
||||||
|
}
|
||||||
return some_expr(r);
|
return some_expr(r);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return true if \c e is of the form (elim ... (?m ...))
|
template<typename Ctx>
|
||||||
bool inductive_normalizer_extension::may_reduce_later(expr const & e, extension_context & ctx) const {
|
bool is_elim_meta_app_core(Ctx & ctx, expr const & e) {
|
||||||
inductive_env_ext const & ext = get_extension(ctx.env());
|
inductive_env_ext const & ext = get_extension(ctx.env());
|
||||||
expr const & elim_fn = get_app_fn(e);
|
expr const & elim_fn = get_app_fn(e);
|
||||||
if (!is_constant(elim_fn))
|
if (!is_constant(elim_fn))
|
||||||
|
@ -814,12 +819,22 @@ bool inductive_normalizer_extension::may_reduce_later(expr const & e, extension_
|
||||||
return false;
|
return false;
|
||||||
buffer<expr> elim_args;
|
buffer<expr> elim_args;
|
||||||
get_app_args(e, elim_args);
|
get_app_args(e, elim_args);
|
||||||
if (elim_args.size() != it1->m_num_ACe + it1->m_num_indices + 1)
|
unsigned major_idx = it1->m_num_ACe + it1->m_num_indices;
|
||||||
|
if (elim_args.size() < major_idx + 1)
|
||||||
return false;
|
return false;
|
||||||
expr intro_app = ctx.whnf(elim_args.back());
|
expr intro_app = ctx.whnf(elim_args[major_idx]);
|
||||||
return is_meta(intro_app);
|
return is_meta(intro_app);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool is_elim_meta_app(type_checker & tc, expr const & e) {
|
||||||
|
return is_elim_meta_app_core(tc, e);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return true if \c e is of the form (elim ... (?m ...))
|
||||||
|
bool inductive_normalizer_extension::may_reduce_later(expr const & e, extension_context & ctx) const {
|
||||||
|
return is_elim_meta_app_core(ctx, e);
|
||||||
|
}
|
||||||
|
|
||||||
optional<inductive_decls> is_inductive_decl(environment const & env, name const & n) {
|
optional<inductive_decls> is_inductive_decl(environment const & env, name const & n) {
|
||||||
inductive_env_ext const & ext = get_extension(env);
|
inductive_env_ext const & ext = get_extension(env);
|
||||||
if (auto it = ext.m_inductive_info.find(n))
|
if (auto it = ext.m_inductive_info.find(n))
|
||||||
|
@ -843,5 +858,13 @@ optional<name> is_elim_rule(environment const & env, name const & n) {
|
||||||
else
|
else
|
||||||
return optional<name>();
|
return optional<name>();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
optional<unsigned> get_elim_major_idx(environment const & env, name const & n) {
|
||||||
|
inductive_env_ext const & ext = get_extension(env);
|
||||||
|
if (auto it = ext.m_elim_info.find(n))
|
||||||
|
return optional<unsigned>(it->m_num_ACe + it->m_num_indices);
|
||||||
|
else
|
||||||
|
return optional<unsigned>();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -62,5 +62,9 @@ optional<name> is_intro_rule(environment const & env, name const & n);
|
||||||
s.t. \c n is an elimination rule of D. Otherwise, return none.
|
s.t. \c n is an elimination rule of D. Otherwise, return none.
|
||||||
*/
|
*/
|
||||||
optional<name> is_elim_rule(environment const & env, name const & n);
|
optional<name> is_elim_rule(environment const & env, name const & n);
|
||||||
|
|
||||||
|
/** \brief Given the eliminator \c n, this function return the position of major premise */
|
||||||
|
optional<unsigned> get_elim_major_idx(environment const & env, name const & n);
|
||||||
|
bool is_elim_meta_app(type_checker & tc, expr const & e);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -24,6 +24,37 @@ Author: Leonardo de Moura
|
||||||
namespace lean {
|
namespace lean {
|
||||||
static name g_x_name("x");
|
static name g_x_name("x");
|
||||||
|
|
||||||
|
expr replace_range(expr const & type, expr const & new_range) {
|
||||||
|
if (is_pi(type))
|
||||||
|
return update_binding(type, binding_domain(type), replace_range(binding_body(type), new_range));
|
||||||
|
else
|
||||||
|
return new_range;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \brief Return the "arity" of the given type. The arity is the number of nested pi-expressions. */
|
||||||
|
static unsigned get_arity(expr type) {
|
||||||
|
unsigned r = 0;
|
||||||
|
while (is_pi(type)) {
|
||||||
|
type = binding_body(type);
|
||||||
|
r++;
|
||||||
|
}
|
||||||
|
return r;
|
||||||
|
}
|
||||||
|
|
||||||
|
expr mk_aux_type_metavar_for(name_generator & ngen, expr const & t) {
|
||||||
|
expr new_type = replace_range(t, mk_sort(mk_meta_univ(ngen.next())));
|
||||||
|
name n = ngen.next();
|
||||||
|
return mk_metavar(n, new_type);
|
||||||
|
}
|
||||||
|
|
||||||
|
expr mk_aux_metavar_for(name_generator & ngen, expr const & t) {
|
||||||
|
unsigned num = get_arity(t);
|
||||||
|
expr r = mk_app_vars(mk_aux_type_metavar_for(ngen, t), num);
|
||||||
|
expr new_type = replace_range(t, r);
|
||||||
|
name n = ngen.next();
|
||||||
|
return mk_metavar(n, new_type);
|
||||||
|
}
|
||||||
|
|
||||||
type_checker::scope::scope(type_checker & tc):
|
type_checker::scope::scope(type_checker & tc):
|
||||||
m_tc(tc), m_keep(false) {
|
m_tc(tc), m_keep(false) {
|
||||||
m_tc.push();
|
m_tc.push();
|
||||||
|
@ -68,48 +99,6 @@ optional<constraint> type_checker::next_cnstr() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
\brief Given a metavariable application ((?m t_1) ... t_k)
|
|
||||||
Create a telescope with the types of t_1 ... t_k.
|
|
||||||
If t_i is a local constant, then we abstract the occurrences of t_i in the types of t_{i+1} ... t_k.
|
|
||||||
Return false if the telescope still contains local constants after the abstraction step.
|
|
||||||
*/
|
|
||||||
bool type_checker::meta_to_telescope(expr const & e, buffer<expr> & telescope) {
|
|
||||||
lean_assert(is_meta(e));
|
|
||||||
lean_assert(closed(e));
|
|
||||||
buffer<optional<expr>> locals;
|
|
||||||
return meta_to_telescope_core(e, telescope, locals);
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \brief Auxiliary method for meta_to_telescope */
|
|
||||||
bool type_checker::meta_to_telescope_core(expr const & e, buffer<expr> & telescope, buffer<optional<expr>> & locals) {
|
|
||||||
lean_assert(is_meta(e));
|
|
||||||
if (is_app(e)) {
|
|
||||||
if (!meta_to_telescope_core(app_fn(e), telescope, locals))
|
|
||||||
return false;
|
|
||||||
// infer type and abstract local constants
|
|
||||||
unsigned n = locals.size();
|
|
||||||
expr t = replace(infer_type(app_arg(e)),
|
|
||||||
[&](expr const & e, unsigned offset) -> optional<expr> {
|
|
||||||
if (is_local(e)) {
|
|
||||||
for (unsigned i = 0; i < n; i++) {
|
|
||||||
if (locals[i] && is_eqp(*locals[i], e))
|
|
||||||
return some_expr(mk_var(offset + n - i - 1));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return none_expr();
|
|
||||||
});
|
|
||||||
if (has_local(t))
|
|
||||||
return false;
|
|
||||||
telescope.push_back(t);
|
|
||||||
if (is_local(e))
|
|
||||||
locals.push_back(some_expr(e));
|
|
||||||
else
|
|
||||||
locals.push_back(none_expr());
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
\brief Make sure \c e "is" a sort, and return the corresponding sort.
|
\brief Make sure \c e "is" a sort, and return the corresponding sort.
|
||||||
If \c e is not a sort, then the whnf procedure is invoked. Then, there are
|
If \c e is not a sort, then the whnf procedure is invoked. Then, there are
|
||||||
|
@ -150,25 +139,19 @@ expr type_checker::ensure_pi_core(expr e, expr const & s) {
|
||||||
if (is_pi(e)) {
|
if (is_pi(e)) {
|
||||||
return e;
|
return e;
|
||||||
} else if (is_meta(e)) {
|
} else if (is_meta(e)) {
|
||||||
buffer<expr> telescope;
|
buffer<expr> margs;
|
||||||
if (!meta_to_telescope(e, telescope)) {
|
expr const & m = get_app_args(e, margs);
|
||||||
environment env = m_env;
|
expr const & mtype = mlocal_type(m);
|
||||||
throw_kernel_exception(env, s,
|
expr maux1 = mk_aux_type_metavar_for(m_gen, mtype);
|
||||||
[=](formatter const & fmt, options const & o) { return pp_function_expected(fmt, env, o, s); });
|
expr dontcare;
|
||||||
}
|
expr tmp_pi = mk_pi(g_x_name, mk_app_vars(maux1, margs.size()), dontcare); // trick for "extending" the context
|
||||||
expr ta = mk_sort(mk_meta_univ(m_gen.next()));
|
expr mtype2 = replace_range(mtype, tmp_pi); // trick for "extending" the context
|
||||||
expr A = mk_metavar(m_gen.next(), mk_pi(telescope, ta));
|
expr maux2 = mk_aux_type_metavar_for(m_gen, mtype2);
|
||||||
expr A_xs = mk_app_vars(A, telescope.size());
|
expr A = mk_app(maux1, margs);
|
||||||
telescope.push_back(A_xs);
|
margs.push_back(Var(0));
|
||||||
expr tb = mk_sort(mk_meta_univ(m_gen.next()));
|
expr B = mk_app(maux2, margs);
|
||||||
expr B = mk_metavar(m_gen.next(), mk_pi(telescope, tb));
|
expr r = mk_pi(g_x_name, A, B);
|
||||||
buffer<expr> args;
|
justification j = mk_justification(s,
|
||||||
get_app_args(e, args);
|
|
||||||
expr A_args = mk_app(A, args.size(), args.data());
|
|
||||||
args.push_back(Var(0));
|
|
||||||
expr B_args = mk_app(B, args.size(), args.data());
|
|
||||||
expr r = mk_pi(g_x_name, A_args, B_args);
|
|
||||||
justification j = mk_justification(s,
|
|
||||||
[=](formatter const & fmt, options const & o, substitution const & subst) {
|
[=](formatter const & fmt, options const & o, substitution const & subst) {
|
||||||
return pp_function_expected(fmt, m_env, o, subst.instantiate(s));
|
return pp_function_expected(fmt, m_env, o, subst.instantiate(s));
|
||||||
});
|
});
|
||||||
|
|
|
@ -16,6 +16,30 @@ Author: Leonardo de Moura
|
||||||
#include "kernel/converter.h"
|
#include "kernel/converter.h"
|
||||||
|
|
||||||
namespace lean {
|
namespace lean {
|
||||||
|
|
||||||
|
/** \brief Given \c type of the form <tt>(Pi ctx, r)</tt>, return <tt>(Pi ctx, new_range)</tt> */
|
||||||
|
expr replace_range(expr const & type, expr const & new_range);
|
||||||
|
|
||||||
|
/**
|
||||||
|
\brief Given a type \c t of the form
|
||||||
|
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n]</tt>
|
||||||
|
return a new metavariable \c m1 with type
|
||||||
|
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), Type.{u}</tt>
|
||||||
|
where \c u is a new universe metavariable.
|
||||||
|
*/
|
||||||
|
expr mk_aux_type_metavar_for(name_generator & ngen, expr const & t);
|
||||||
|
|
||||||
|
/**
|
||||||
|
\brief Given a type \c t of the form
|
||||||
|
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n]</tt>
|
||||||
|
return a new metavariable \c m1 with type
|
||||||
|
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), (m2 x_1 ... x_n)</tt>
|
||||||
|
where \c m2 is a new metavariable with type
|
||||||
|
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), Type.{u}</tt>
|
||||||
|
where \c u is a new universe metavariable.
|
||||||
|
*/
|
||||||
|
expr mk_aux_metavar_for(name_generator & ngen, expr const & t);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
\brief Lean Type Checker. It can also be used to infer types, check whether a
|
\brief Lean Type Checker. It can also be used to infer types, check whether a
|
||||||
type \c A is convertible to a type \c B, etc.
|
type \c A is convertible to a type \c B, etc.
|
||||||
|
@ -59,8 +83,6 @@ class type_checker {
|
||||||
optional<expr> expand_macro(expr const & m);
|
optional<expr> expand_macro(expr const & m);
|
||||||
std::pair<expr, expr> open_binding_body(expr const & e);
|
std::pair<expr, expr> open_binding_body(expr const & e);
|
||||||
void add_cnstr(constraint const & c);
|
void add_cnstr(constraint const & c);
|
||||||
bool meta_to_telescope(expr const & e, buffer<expr> & telescope);
|
|
||||||
bool meta_to_telescope_core(expr const & e, buffer<expr> & telescope, buffer<optional<expr>> & locals);
|
|
||||||
expr ensure_sort_core(expr e, expr const & s);
|
expr ensure_sort_core(expr e, expr const & s);
|
||||||
expr ensure_pi_core(expr e, expr const & s);
|
expr ensure_pi_core(expr e, expr const & s);
|
||||||
justification mk_macro_jst(expr const & e);
|
justification mk_macro_jst(expr const & e);
|
||||||
|
|
|
@ -11,36 +11,26 @@ Author: Leonardo de Moura
|
||||||
|
|
||||||
namespace lean {
|
namespace lean {
|
||||||
class inductive_unifier_plugin_cell : public unifier_plugin_cell {
|
class inductive_unifier_plugin_cell : public unifier_plugin_cell {
|
||||||
/** \brief Return true iff \c e is of the form (elim ... (?m ...)) */
|
/** \brief Return true iff the lhs or rhs of the constraint c is of the form (elim ... (?m ...) ...) */
|
||||||
bool is_elim_meta_app(type_checker & tc, expr const & e) const {
|
|
||||||
if (!is_app(e))
|
|
||||||
return false;
|
|
||||||
expr const & f = get_app_fn(e);
|
|
||||||
if (!is_constant(f))
|
|
||||||
return false;
|
|
||||||
auto it_name = inductive::is_elim_rule(tc.env(), const_name(f));
|
|
||||||
if (!it_name)
|
|
||||||
return false;
|
|
||||||
if (!is_meta(app_arg(e)))
|
|
||||||
return false;
|
|
||||||
if (is_pi(tc.whnf(tc.infer(e))))
|
|
||||||
return false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \brief Return true iff the lhs or rhs of the constraint c is of the form (elim ... (?m ...)) */
|
|
||||||
bool is_elim_meta_cnstr(type_checker & tc, constraint const & c) const {
|
bool is_elim_meta_cnstr(type_checker & tc, constraint const & c) const {
|
||||||
return is_eq_cnstr(c) && (is_elim_meta_app(tc, cnstr_lhs_expr(c)) || is_elim_meta_app(tc, cnstr_rhs_expr(c)));
|
return is_eq_cnstr(c) && (inductive::is_elim_meta_app(tc, cnstr_lhs_expr(c)) ||
|
||||||
|
inductive::is_elim_meta_app(tc, cnstr_rhs_expr(c)));
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \brief Return true iff \c e is of the form (?m ... (intro ...)) */
|
/** \brief Return true iff \c e is of the form (?m ... (intro ...) ...) */
|
||||||
bool is_meta_intro_app(type_checker & tc, expr const & e) const {
|
bool is_meta_intro_app(type_checker & tc, expr const & e) const {
|
||||||
if (!is_app(e) || !is_meta(e))
|
if (!is_app(e) || !is_meta(e))
|
||||||
return false;
|
return false;
|
||||||
expr arg = get_app_fn(app_arg(e));
|
buffer<expr> args;
|
||||||
if (!is_constant(arg))
|
get_app_args(e, args);
|
||||||
return false;
|
for (expr const & a : args) {
|
||||||
return (bool) inductive::is_intro_rule(tc.env(), const_name(arg)); // NOLINT
|
expr arg = get_app_fn(a);
|
||||||
|
if (!is_constant(arg))
|
||||||
|
continue;
|
||||||
|
if (inductive::is_intro_rule(tc.env(), const_name(arg)))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \brief Return true iff the lhs or rhs of the constraint c is of the form (?m ... (intro ...)) */
|
/** \brief Return true iff the lhs or rhs of the constraint c is of the form (?m ... (intro ...)) */
|
||||||
|
@ -50,21 +40,21 @@ class inductive_unifier_plugin_cell : public unifier_plugin_cell {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
\brief Given (elim args) =?= t, where elim is the eliminator/recursor for the inductive declaration \c decl,
|
\brief Given (elim args) =?= t, where elim is the eliminator/recursor for the inductive declaration \c decl,
|
||||||
and the last argument of args is of the form (?m ...), we create a case split where we try to assign (?m ...)
|
and the major premise is of the form (?m ...), we create a case split where we try to assign (?m ...)
|
||||||
to the different constructors of decl.
|
to the different constructors of decl.
|
||||||
*/
|
*/
|
||||||
lazy_list<constraints> add_elim_meta_cnstrs(type_checker & tc, name_generator ngen, inductive::inductive_decl const & decl,
|
lazy_list<constraints> add_elim_meta_cnstrs(type_checker & tc, name_generator ngen, inductive::inductive_decl const & decl,
|
||||||
expr const & elim, buffer<expr> & args, expr const & t, justification const & j) const {
|
expr const & elim, buffer<expr> & args, expr const & t, justification const & j) const {
|
||||||
lean_assert(is_constant(elim));
|
lean_assert(is_constant(elim));
|
||||||
|
environment const & env = tc.env();
|
||||||
levels elim_lvls = const_levels(elim);
|
levels elim_lvls = const_levels(elim);
|
||||||
unsigned elim_num_lvls = length(elim_lvls);
|
unsigned elim_num_lvls = length(elim_lvls);
|
||||||
unsigned num_args = args.size();
|
unsigned major_idx = *inductive::get_elim_major_idx(env, const_name(elim));
|
||||||
expr meta = args[num_args - 1]; // save last argument, we will update it
|
expr meta = args[major_idx]; // save this argument, we will update it
|
||||||
lean_assert(is_meta(meta));
|
lean_assert(is_meta(meta));
|
||||||
buffer<expr> margs;
|
buffer<expr> margs;
|
||||||
expr const & m = get_app_args(meta, margs);
|
expr const & m = get_app_args(meta, margs);
|
||||||
expr const & mtype = mlocal_type(m);
|
expr const & mtype = mlocal_type(m);
|
||||||
environment const & env = tc.env();
|
|
||||||
buffer<constraints> alts;
|
buffer<constraints> alts;
|
||||||
for (auto const & intro : inductive::inductive_decl_intros(decl)) {
|
for (auto const & intro : inductive::inductive_decl_intros(decl)) {
|
||||||
name const & intro_name = inductive::intro_rule_name(intro);
|
name const & intro_name = inductive::intro_rule_name(intro);
|
||||||
|
@ -83,10 +73,10 @@ class inductive_unifier_plugin_cell : public unifier_plugin_cell {
|
||||||
hint = mk_app(hint, mk_app(mk_aux_metavar_for(ngen, mtype), margs));
|
hint = mk_app(hint, mk_app(mk_aux_metavar_for(ngen, mtype), margs));
|
||||||
intro_type = tc.whnf(binding_body(intro_type));
|
intro_type = tc.whnf(binding_body(intro_type));
|
||||||
}
|
}
|
||||||
constraint c1 = mk_eq_cnstr(meta, hint, j);
|
constraint c1 = mk_eq_cnstr(meta, hint, j);
|
||||||
args[num_args - 1] = hint;
|
args[major_idx] = hint;
|
||||||
expr reduce_elim = tc.whnf(mk_app(elim, args));
|
expr reduce_elim = tc.whnf(mk_app(elim, args));
|
||||||
constraint c2 = mk_eq_cnstr(reduce_elim, t, j);
|
constraint c2 = mk_eq_cnstr(reduce_elim, t, j);
|
||||||
alts.push_back(constraints({c1, c2}));
|
alts.push_back(constraints({c1, c2}));
|
||||||
}
|
}
|
||||||
return to_lazy(to_list(alts.begin(), alts.end()));
|
return to_lazy(to_list(alts.begin(), alts.end()));
|
||||||
|
@ -94,7 +84,7 @@ class inductive_unifier_plugin_cell : public unifier_plugin_cell {
|
||||||
|
|
||||||
lazy_list<constraints> process_elim_meta_core(type_checker & tc, name_generator const & ngen,
|
lazy_list<constraints> process_elim_meta_core(type_checker & tc, name_generator const & ngen,
|
||||||
expr const & lhs, expr const & rhs, justification const & j) const {
|
expr const & lhs, expr const & rhs, justification const & j) const {
|
||||||
lean_assert(is_elim_meta_app(tc, lhs));
|
lean_assert(inductive::is_elim_meta_app(tc, lhs));
|
||||||
buffer<expr> args;
|
buffer<expr> args;
|
||||||
expr const & elim = get_app_args(lhs, args);
|
expr const & elim = get_app_args(lhs, args);
|
||||||
environment const & env = tc.env();
|
environment const & env = tc.env();
|
||||||
|
@ -116,9 +106,9 @@ public:
|
||||||
expr const & lhs = cnstr_lhs_expr(c);
|
expr const & lhs = cnstr_lhs_expr(c);
|
||||||
expr const & rhs = cnstr_rhs_expr(c);
|
expr const & rhs = cnstr_rhs_expr(c);
|
||||||
justification const & j = c.get_justification();
|
justification const & j = c.get_justification();
|
||||||
if (is_elim_meta_app(tc, lhs))
|
if (inductive::is_elim_meta_app(tc, lhs))
|
||||||
return process_elim_meta_core(tc, ngen, lhs, rhs, j);
|
return process_elim_meta_core(tc, ngen, lhs, rhs, j);
|
||||||
else if (is_elim_meta_app(tc, rhs))
|
else if (inductive::is_elim_meta_app(tc, rhs))
|
||||||
return process_elim_meta_core(tc, ngen, rhs, lhs, j);
|
return process_elim_meta_core(tc, ngen, rhs, lhs, j);
|
||||||
else
|
else
|
||||||
return lazy_list<constraints>();
|
return lazy_list<constraints>();
|
||||||
|
|
|
@ -190,55 +190,6 @@ std::pair<unify_status, substitution> unify_simple(substitution const & s, const
|
||||||
return mk_pair(unify_status::Unsupported, s);
|
return mk_pair(unify_status::Unsupported, s);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/** \brief Given \c type of the form <tt>(Pi ctx, r)</tt>, return <tt>(Pi ctx, new_range)</tt> */
|
|
||||||
static expr replace_range(expr const & type, expr const & new_range) {
|
|
||||||
if (is_pi(type))
|
|
||||||
return update_binding(type, binding_domain(type), replace_range(binding_body(type), new_range));
|
|
||||||
else
|
|
||||||
return new_range;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** \brief Return the "arity" of the given type. The arity is the number of nested pi-expressions. */
|
|
||||||
static unsigned get_arity(expr type) {
|
|
||||||
unsigned r = 0;
|
|
||||||
while (is_pi(type)) {
|
|
||||||
type = binding_body(type);
|
|
||||||
r++;
|
|
||||||
}
|
|
||||||
return r;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
\brief Given a type \c t of the form
|
|
||||||
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n]</tt>
|
|
||||||
return a new metavariable \c m1 with type
|
|
||||||
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), Type.{u}</tt>
|
|
||||||
where \c u is a new universe metavariable.
|
|
||||||
*/
|
|
||||||
expr mk_aux_type_metavar_for(name_generator & ngen, expr const & t) {
|
|
||||||
expr new_type = replace_range(t, mk_sort(mk_meta_univ(ngen.next())));
|
|
||||||
name n = ngen.next();
|
|
||||||
return mk_metavar(n, new_type);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
\brief Given a type \c t of the form
|
|
||||||
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), B[x_1, ..., x_n]</tt>
|
|
||||||
return a new metavariable \c m1 with type
|
|
||||||
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), (m2 x_1 ... x_n)</tt>
|
|
||||||
where \c m2 is a new metavariable with type
|
|
||||||
<tt>Pi (x_1 : A_1) ... (x_n : A_n[x_1, ..., x_{n-1}]), Type.{u}</tt>
|
|
||||||
where \c u is a new universe metavariable.
|
|
||||||
*/
|
|
||||||
expr mk_aux_metavar_for(name_generator & ngen, expr const & t) {
|
|
||||||
unsigned num = get_arity(t);
|
|
||||||
expr r = mk_app_vars(mk_aux_type_metavar_for(ngen, t), num);
|
|
||||||
expr new_type = replace_range(t, r);
|
|
||||||
name n = ngen.next();
|
|
||||||
return mk_metavar(n, new_type);
|
|
||||||
}
|
|
||||||
|
|
||||||
static constraint g_dont_care_cnstr = mk_eq_cnstr(expr(), expr(), justification());
|
static constraint g_dont_care_cnstr = mk_eq_cnstr(expr(), expr(), justification());
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -740,11 +691,15 @@ struct unifier_fn {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void pop_case_split() {
|
||||||
|
m_tc->pop();
|
||||||
|
m_case_splits.pop_back();
|
||||||
|
}
|
||||||
|
|
||||||
bool resolve_conflict() {
|
bool resolve_conflict() {
|
||||||
lean_assert(in_conflict());
|
lean_assert(in_conflict());
|
||||||
// Remark: we must save the value of m_conflict because d->next(*this) may change it.
|
|
||||||
justification conflict = *m_conflict;
|
|
||||||
while (!m_case_splits.empty()) {
|
while (!m_case_splits.empty()) {
|
||||||
|
justification conflict = *m_conflict;
|
||||||
std::unique_ptr<case_split> & d = m_case_splits.back();
|
std::unique_ptr<case_split> & d = m_case_splits.back();
|
||||||
if (depends_on(conflict, d->m_assumption_idx)) {
|
if (depends_on(conflict, d->m_assumption_idx)) {
|
||||||
d->m_failed_justifications = mk_composite1(d->m_failed_justifications, conflict);
|
d->m_failed_justifications = mk_composite1(d->m_failed_justifications, conflict);
|
||||||
|
@ -752,9 +707,9 @@ struct unifier_fn {
|
||||||
reset_conflict();
|
reset_conflict();
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
} else {
|
||||||
|
pop_case_split();
|
||||||
}
|
}
|
||||||
m_tc->pop();
|
|
||||||
m_case_splits.pop_back();
|
|
||||||
}
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
@ -784,6 +739,7 @@ struct unifier_fn {
|
||||||
} else {
|
} else {
|
||||||
// update conflict
|
// update conflict
|
||||||
update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications));
|
update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications));
|
||||||
|
pop_case_split();
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -830,6 +786,7 @@ struct unifier_fn {
|
||||||
} else {
|
} else {
|
||||||
// update conflict
|
// update conflict
|
||||||
update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications));
|
update_conflict(mk_composite1(*m_conflict, cs.m_failed_justifications));
|
||||||
|
pop_case_split();
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -29,8 +29,8 @@ definition group_to_struct [instance] (g : group) : group_struct (carrier g)
|
||||||
|
|
||||||
check group_struct
|
check group_struct
|
||||||
|
|
||||||
definition mul {A : Type} {s : group_struct A} : A → A → A
|
definition mul {A : Type} {s : group_struct A} (a b : A) : A
|
||||||
:= group_struct_rec (λ mul one inv h1 h2 h3, mul) s
|
:= group_struct_rec (λ mul one inv h1 h2 h3, mul) s a b
|
||||||
|
|
||||||
infixl `*`:75 := mul
|
infixl `*`:75 := mul
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue