feat(library/theories/topology/limit): add general properties of limits, various improvements
This commit is contained in:
parent
eae80118bf
commit
dd8be61c84
2 changed files with 348 additions and 131 deletions
|
@ -51,7 +51,7 @@ In terms of sets, this is equivalent to
|
|||
|
||||
∀ s : set Y, s ∈ sets F₂ → f '- s ∈ sets F₁
|
||||
|
||||
so one option is to use "tendsto_intro" "tendsto_elim" and "tendsto_iff" to unpack meanings
|
||||
so one option is to use "tendsto_intro" "tendsto_dest" and "tendsto_iff" to unpack meanings
|
||||
in terms of "eventually", and then use the intro and elim rules of "eventually". For specific
|
||||
topologies -- for example, those given by a metric space or norm -- see the specialized
|
||||
intro and elim rules for eventually in those files.
|
||||
|
@ -61,6 +61,9 @@ and iff rules. Again, see also specific versions for metric spaces, normed space
|
|||
|
||||
Note that the filters at_infty and at_ninfty don't rely on topological notions at all, only the
|
||||
existence of a suitable order.
|
||||
|
||||
We mark tendsto as irreducible after defining the intro and elim rules, because otherwise
|
||||
tactics seem to unfold too much.
|
||||
-/
|
||||
import data.set data.nat algebra.interval .basic
|
||||
import theories.move -- TODO: remove after move to Lean 3
|
||||
|
@ -142,74 +145,108 @@ le_inf (mapfilter_le_mapfilter f !inf_le_left) (mapfilter_le_mapfilter f !inf_le
|
|||
|
||||
definition tendsto (f : X → Y) (F₂ : filter Y) (F₁ : filter X) : Prop := mapfilter f F₁ ≤ F₂
|
||||
|
||||
theorem tendsto_of_forall_eventually {F₂ : filter Y} {F₁ : filter X} {f : X → Y}
|
||||
theorem tendsto_intro' {F₂ : filter Y} {F₁ : filter X} {f : X → Y}
|
||||
(H : ∀ P, eventually P F₂ → eventually P (mapfilter f F₁)) :
|
||||
tendsto f F₂ F₁ := H
|
||||
|
||||
theorem eventually_mapfilter_of_tendsto {F₂ : filter Y} {F₁ : filter X} {f : X → Y}
|
||||
theorem tendsto_intro {F₂ : filter Y} {F₁ : filter X} {f : X → Y}
|
||||
(H : ∀ P, eventually P F₂ → eventually (λ x, P (f x)) F₁) :
|
||||
tendsto f F₂ F₁ := H
|
||||
|
||||
theorem tendsto_dest' {F₂ : filter Y} {F₁ : filter X} {f : X → Y}
|
||||
{P : Y → Prop} (H : tendsto f F₂ F₁) (H' : eventually P F₂) :
|
||||
eventually P (mapfilter f F₁) := H H'
|
||||
|
||||
theorem tendsto_iff (F₂ : filter Y) (F₁ : filter X) (f : X → Y) :
|
||||
theorem tendsto_dest {F₂ : filter Y} {F₁ : filter X} {f : X → Y}
|
||||
{P : Y → Prop} (H : tendsto f F₂ F₁) (H' : eventually P F₂) :
|
||||
eventually (λ x, P (f x)) F₁ := eventually_of_eventually_mapfilter (tendsto_dest' H H')
|
||||
|
||||
theorem tendsto_iff' (F₂ : filter Y) (F₁ : filter X) (f : X → Y) :
|
||||
tendsto f F₂ F₁ ↔ (∀ P, eventually P F₂ → eventually P (mapfilter f F₁)) :=
|
||||
iff.refl _
|
||||
|
||||
theorem tendsto_iff' (F₂ : filter Y) (F₁ : filter X) (f : X → Y) :
|
||||
theorem tendsto_iff (F₂ : filter Y) (F₁ : filter X) (f : X → Y) :
|
||||
tendsto f F₂ F₁ ↔ (∀ P, eventually P F₂ → eventually (λ x, P (f x)) F₁) :=
|
||||
iff.refl _
|
||||
|
||||
theorem tendsto_comp {f : X → Y} {g : Y → Z} {F₁ : filter X} {F₂ : filter Y} {F₃ : filter Z}
|
||||
(Hf : tendsto f F₂ F₁) (Hg : tendsto g F₃ F₂) : tendsto (g ∘ f) F₃ F₁ :=
|
||||
tendsto_of_forall_eventually
|
||||
(take P, suppose eventually P F₃,
|
||||
have eventually P (mapfilter g F₂), from Hg this,
|
||||
have eventually (λ y, P (g y)) F₂, from eventually_of_eventually_mapfilter this,
|
||||
have eventually (λ y, P (g y)) (mapfilter f F₁), from Hf this,
|
||||
show eventually P (mapfilter g (mapfilter f F₁)), from eventually_mapfilter this)
|
||||
tendsto_intro (take P, suppose eventually P F₃,
|
||||
have eventually (λ y, P (g y)) F₂, from tendsto_dest Hg this,
|
||||
show eventually (λ x, P (g (f x))) F₁, from tendsto_dest Hf this)
|
||||
|
||||
theorem tendsto_of_ge {f : X → Y} {F₂ F₂' : filter Y} {F₁ : filter X}
|
||||
(HF₂ : F₂' ≥ F₂) (H : tendsto f F₂ F₁) : tendsto f F₂' F₁ :=
|
||||
theorem tendsto_of_le_left {f : X → Y} {F₂ F₂' : filter Y} {F₁ : filter X}
|
||||
(HF₂ : F₂ ≤ F₂') (H : tendsto f F₂ F₁) : tendsto f F₂' F₁ :=
|
||||
take P, suppose eventually P F₂',
|
||||
have eventually P F₂, from eventually_of_le this HF₂,
|
||||
show eventually P (mapfilter f F₁), from H this
|
||||
|
||||
theorem tendsto_of_le {f : X → Y} {F₂ : filter Y} {F₁ F₁' : filter X}
|
||||
theorem tendsto_of_le_right {f : X → Y} {F₂ : filter Y} {F₁ F₁' : filter X}
|
||||
(HF₁ : F₁' ≤ F₁) (H : tendsto f F₂ F₁) : tendsto f F₂ F₁' :=
|
||||
take P, suppose eventually P F₂,
|
||||
have eventually P (mapfilter f F₁), from H this,
|
||||
show eventually P (mapfilter f F₁'), from eventually_of_le this (mapfilter_le_mapfilter _ HF₁)
|
||||
|
||||
theorem tendsto_of_ge_of_le {f : X → Y} {F₂ F₂' : filter Y} {F₁ F₁' : filter X}
|
||||
(HF₂ : F₂' ≥ F₂) (HF₁ : F₁' ≤ F₁) (H : tendsto f F₂ F₁) : tendsto f F₂' F₁' :=
|
||||
tendsto_of_ge HF₂ (tendsto_of_le HF₁ H)
|
||||
theorem tendsto_of_le_of_le {f : X → Y} {F₂ F₂' : filter Y} {F₁ F₁' : filter X}
|
||||
(HF₂ : F₂ ≤ F₂') (HF₁ : F₁' ≤ F₁) (H : tendsto f F₂ F₁) : tendsto f F₂' F₁' :=
|
||||
tendsto_of_le_left HF₂ (tendsto_of_le_right HF₁ H)
|
||||
|
||||
theorem tendsto_id {F : filter X} : tendsto (λx, x) F F :=
|
||||
theorem tendsto_id {F : filter X} : tendsto (λ x, x) F F :=
|
||||
take P, assume H, H
|
||||
|
||||
theorem tendsto_inf_left {f : X → Y} {F : filter Y} (F₁ : filter X) {F₂ : filter X}
|
||||
(H : tendsto f F F₁) :
|
||||
tendsto f F (inf F₁ F₂) :=
|
||||
tendsto_of_le !inf_le_left H
|
||||
theorem tendsto_inf_left {f : X → Y} {F₂ : filter Y} (F₁ : filter X) {F₁' : filter X}
|
||||
(H : tendsto f F₂ F₁) :
|
||||
tendsto f F₂ (inf F₁ F₁') :=
|
||||
tendsto_of_le_right !inf_le_left H
|
||||
|
||||
theorem tendsto_inf_right {f : X → Y} {F : filter Y} {F₁ : filter X} (F₂ : filter X)
|
||||
(H : tendsto f F F₂) :
|
||||
tendsto f F (inf F₁ F₂) :=
|
||||
tendsto_of_le !inf_le_right H
|
||||
theorem tendsto_inf_right {f : X → Y} {F₂ : filter Y} {F₁ : filter X} (F₁' : filter X)
|
||||
(H : tendsto f F₂ F₁') :
|
||||
tendsto f F₂ (inf F₁ F₁') :=
|
||||
tendsto_of_le_right !inf_le_right H
|
||||
|
||||
theorem tendsto_sup_left {f : X → Y} (F₁ : filter Y) {F₂ : filter Y} {F : filter X}
|
||||
(H : tendsto f F₁ F) :
|
||||
tendsto f (sup F₁ F₂) F :=
|
||||
tendsto_of_ge !le_sup_left H
|
||||
theorem tendsto_inf {f : X → Y} {F₂ F₂' : filter Y} {F₁ : filter X}
|
||||
(H₁ : tendsto f F₂ F₁) (H₂ : tendsto f F₂' F₁) :
|
||||
tendsto f (inf F₂ F₂') F₁ :=
|
||||
tendsto_intro (take P, suppose eventually P (inf F₂ F₂'),
|
||||
obtain S [eSF₂ [T [eTF₂' STsubP]]], from exists_of_eventually_inf this,
|
||||
have HS : eventually (λ x, S (f x)) F₁, from tendsto_dest H₁ eSF₂,
|
||||
have HT : eventually (λ x, T (f x)) F₁, from tendsto_dest H₂ eTF₂',
|
||||
have HST : eventually (λ x, S (f x) ∧ T (f x)) F₁, from eventually_and HS HT,
|
||||
have H' : ∀ x, S (f x) ∧ T (f x) → P (f x), from take x, STsubP (f x),
|
||||
show eventually (λ x, P (f x)) F₁, from eventually_mono HST H')
|
||||
|
||||
theorem tendsto_sup_right {f : X → Y} {F₁ : filter Y} (F₂ : filter Y) {F : filter X}
|
||||
(H : tendsto f F₂ F) :
|
||||
tendsto f (sup F₁ F₂) F :=
|
||||
tendsto_of_ge !le_sup_right H
|
||||
theorem tendsto_of_tendsto_inf_left {f : X → Y} {F₂ F₂' : filter Y} {F₁ : filter X}
|
||||
(H : tendsto f (inf F₂ F₂') F₁) :
|
||||
tendsto f F₂ F₁ :=
|
||||
tendsto_of_le_left !inf_le_left H
|
||||
|
||||
theorem tendsto_of_tendsto_inf_right {f : X → Y} {F₂ F₂' : filter Y} {F₁ : filter X}
|
||||
(H : tendsto f (inf F₂ F₂') F₁) :
|
||||
tendsto f F₂' F₁ :=
|
||||
tendsto_of_le_left !inf_le_right H
|
||||
|
||||
theorem tendsto_inf_iff (f : X → Y) (F₂ F₂' : filter Y) (F₁ : filter X) :
|
||||
tendsto f (inf F₂ F₂') F₁ ↔ tendsto f F₂ F₁ ∧ tendsto f F₂' F₁ :=
|
||||
iff.intro
|
||||
(λ H, and.intro (tendsto_of_tendsto_inf_left H) (tendsto_of_tendsto_inf_right H))
|
||||
(λ H, tendsto_inf (and.left H) (and.right H))
|
||||
|
||||
theorem tendsto_sup_left {f : X → Y} (F₂ : filter Y) {F₂' : filter Y} {F₁ : filter X}
|
||||
(H : tendsto f F₂ F₁) :
|
||||
tendsto f (sup F₂ F₂') F₁ :=
|
||||
tendsto_of_le_left !le_sup_left H
|
||||
|
||||
theorem tendsto_sup_right {f : X → Y} (F₂ : filter Y) {F₂' : filter Y} {F₁ : filter X}
|
||||
(H : tendsto f F₂' F₁) :
|
||||
tendsto f (sup F₂ F₂') F₁ :=
|
||||
tendsto_of_le_left !le_sup_right H
|
||||
|
||||
theorem tendsto_comp_iff_tendsto_mapfilter (f : X → Y) (g : Y → Z) (F₁ : filter X) (F₂ : filter Z) :
|
||||
tendsto (g ∘ f) F₂ F₁ ↔ tendsto g F₂ (mapfilter f F₁) :=
|
||||
!iff.refl
|
||||
|
||||
attribute tendsto [irreducible]
|
||||
|
||||
|
||||
/- at_infty -/
|
||||
|
||||
|
@ -224,14 +261,14 @@ section linorderX
|
|||
(principal '[x₂, ∞)) ≤ (principal '[x₁, ∞)) :=
|
||||
principal_le_principal (show '[x₂, ∞) ⊆ '[x₁, ∞), from λ y Hy, le.trans H Hy)
|
||||
|
||||
theorem eventually_at_infty {P : X → Prop} {x : X} (H : ∀ y, y ≥ x → P y) :
|
||||
eventually P at_infty :=
|
||||
theorem eventually_at_infty_intro {P : X → Prop} {x : X} (H : ∀ y, y ≥ x → P y) :
|
||||
eventually P [at ∞] :=
|
||||
have H' : eventually P (principal '[x, ∞)), from eventually_principal H,
|
||||
have principal '[x, ∞) ∈ (λ x : X, principal '[x, ∞)) ' univ, from mem_image_of_mem _ !mem_univ,
|
||||
eventually_Inf this H'
|
||||
|
||||
theorem exists_forall_ge_imp_of_eventually_at_infty {P : X → Prop} [inhabited X]
|
||||
(H : eventually P at_infty) :
|
||||
theorem eventually_at_infty_dest {P : X → Prop} [inhabited X]
|
||||
(H : eventually P [at ∞]) :
|
||||
∃ x, ∀ y, y ≥ x → P y :=
|
||||
let S := (λ x : X, principal '[x, ∞)) ' univ in
|
||||
have H' : ∀₀ F₁ ∈ S, ∀₀ F₂ ∈ S, ∃₀ F ∈ S, F ≤ F₁ ⊓ F₂,
|
||||
|
@ -258,9 +295,9 @@ section linorderX
|
|||
exists.intro x this
|
||||
|
||||
theorem eventually_at_infty_iff (P : X → Prop) [inhabited X] :
|
||||
eventually P at_infty ↔ ∃ x, ∀ y, y ≥ x → P y :=
|
||||
iff.intro exists_forall_ge_imp_of_eventually_at_infty
|
||||
(assume H, obtain x Hx, from H, eventually_at_infty Hx)
|
||||
eventually P [at ∞] ↔ ∃ x, ∀ y, y ≥ x → P y :=
|
||||
iff.intro eventually_at_infty_dest
|
||||
(assume H, obtain x Hx, from H, eventually_at_infty_intro Hx)
|
||||
end linorderX
|
||||
|
||||
|
||||
|
@ -277,14 +314,14 @@ section linorderX
|
|||
(principal '(-∞, x₁]) ≤ (principal '(-∞, x₂]) :=
|
||||
principal_le_principal (show '(-∞, x₁] ⊆ '(-∞, x₂], from λ y Hy, le.trans Hy H)
|
||||
|
||||
theorem eventually_at_ninfty {P : X → Prop} {x : X} (H : ∀ y, y ≤ x → P y) :
|
||||
eventually P at_ninfty :=
|
||||
theorem eventually_at_ninfty_intro {P : X → Prop} {x : X} (H : ∀ y, y ≤ x → P y) :
|
||||
eventually P [at -∞] :=
|
||||
have H' : eventually P (principal '(-∞, x]), from eventually_principal H,
|
||||
have principal '(-∞, x] ∈ (λ x : X, principal '(-∞, x]) ' univ, from mem_image_of_mem _ !mem_univ,
|
||||
eventually_Inf this H'
|
||||
|
||||
theorem exists_forall_le_imp_of_eventually_at_ninfty {P : X → Prop} [inhabited X]
|
||||
(H : eventually P at_ninfty) :
|
||||
theorem eventually_at_ninfty_dest {P : X → Prop} [inhabited X]
|
||||
(H : eventually P [at -∞]) :
|
||||
∃ x, ∀ y, y ≤ x → P y :=
|
||||
let S := (λ x : X, principal '(-∞, x]) ' univ in
|
||||
have H' : ∀₀ F₁ ∈ S, ∀₀ F₂ ∈ S, ∃₀ F ∈ S, F ≤ F₁ ⊓ F₂,
|
||||
|
@ -311,9 +348,9 @@ section linorderX
|
|||
exists.intro x this
|
||||
|
||||
theorem eventually_at_ninfty_iff (P : X → Prop) [inhabited X] :
|
||||
eventually P at_ninfty ↔ ∃ x, ∀ y, y ≤ x → P y :=
|
||||
iff.intro exists_forall_le_imp_of_eventually_at_ninfty
|
||||
(assume H, obtain x Hx, from H, eventually_at_ninfty Hx)
|
||||
eventually P [at -∞] ↔ ∃ x, ∀ y, y ≤ x → P y :=
|
||||
iff.intro eventually_at_ninfty_dest
|
||||
(assume H, obtain x Hx, from H, eventually_at_ninfty_intro Hx)
|
||||
end linorderX
|
||||
|
||||
|
||||
|
@ -322,39 +359,47 @@ end linorderX
|
|||
section approaches_infty
|
||||
variable [linear_strong_order_pair Y]
|
||||
|
||||
abbreviation approaches_infty (f : X → Y) := tendsto f at_infty
|
||||
abbreviation approaches_infty (f : X → Y) := tendsto f [at ∞]
|
||||
|
||||
notation f ` ⟶ ` ∞ := tendsto f at_infty
|
||||
notation f ` ⟶ ` -∞ := tendsto f at_ninfty
|
||||
notation f ` ⟶ ` ∞ := tendsto f [at ∞]
|
||||
|
||||
theorem approaches_infty_intro [inhabited Y] {f : X → Y} {F : filter X}
|
||||
section
|
||||
open classical
|
||||
|
||||
theorem approaches_infty_intro {f : X → Y} {F : filter X}
|
||||
(H : ∀ y, eventually (λ x, f x ≥ y) F) :
|
||||
(f ⟶ ∞) F :=
|
||||
tendsto_of_forall_eventually
|
||||
(take P,
|
||||
suppose eventually P at_infty,
|
||||
obtain z (Hz : ∀ y, y ≥ z → P y), from exists_forall_ge_imp_of_eventually_at_infty this,
|
||||
have ∀ x, f x ≥ z → P (f x), from take x, Hz (f x),
|
||||
have eventually (λ x, P (f x)) F, from eventually_mono (H z) this,
|
||||
show eventually P (mapfilter f F), from eventually_mapfilter this)
|
||||
tendsto_intro
|
||||
(take P, assume eP : eventually P [at ∞],
|
||||
if H' : nonempty Y then
|
||||
have inhabited Y, from inhabited_of_nonempty H',
|
||||
obtain z (Hz : ∀ y, y ≥ z → P y), from eventually_at_infty_dest eP,
|
||||
have ∀ x, f x ≥ z → P (f x), from take x, Hz (f x),
|
||||
show eventually (λ x, P (f x)) F, from eventually_mono (H z) this
|
||||
else
|
||||
show eventually (λ x, P (f x)) F, from eventually_of_forall F
|
||||
take x, absurd (nonempty.intro (f x)) H')
|
||||
end
|
||||
|
||||
theorem approaches_infty_elim {f : X → Y} {F : filter X} (H : (f ⟶ ∞) F) (y : Y) :
|
||||
theorem approaches_infty_dest {f : X → Y} {F : filter X} (H : (f ⟶ ∞) F) (y : Y) :
|
||||
eventually (λ x, f x ≥ y) F :=
|
||||
have eventually (λ x, x ≥ y) at_infty, from eventually_at_infty (take x, suppose x ≥ y, this),
|
||||
have eventually (λ x, x ≥ y) (mapfilter f F), from H this,
|
||||
show eventually (λ x, f x ≥ y) F, from eventually_of_eventually_mapfilter this
|
||||
have eventually (λ x, x ≥ y) [at ∞],
|
||||
from eventually_at_infty_intro (take x, suppose x ≥ y, this),
|
||||
show eventually (λ x, f x ≥ y) F, from tendsto_dest H this
|
||||
|
||||
theorem approaches_infty_iff [inhabited Y] (f : X → Y) (F : filter X) :
|
||||
theorem approaches_infty_iff (f : X → Y) (F : filter X) :
|
||||
(f ⟶ ∞) F ↔ ∀ y, eventually (λ x, f x ≥ y) F :=
|
||||
iff.intro approaches_infty_elim approaches_infty_intro
|
||||
iff.intro approaches_infty_dest approaches_infty_intro
|
||||
|
||||
theorem approaches_infty_of_eventually_ge [inhabited Y] {f g : X → Y} {F : filter X}
|
||||
theorem approaches_infty_of_eventually_ge {f g : X → Y} {F : filter X}
|
||||
(H : eventually (λ x, f x ≥ g x) F) (H' : (g ⟶ ∞) F) :
|
||||
(f ⟶ ∞) F :=
|
||||
approaches_infty_intro (take y,
|
||||
have eventually (λ x, g x ≥ y) F, from approaches_infty_elim H' y,
|
||||
show eventually (λ x, f x ≥ y) F, from
|
||||
eventually_mpr H (eventually_mpr this (eventually_of_forall _ (take x, le.trans))))
|
||||
have eventually (λ x, g x ≥ y) F, from approaches_infty_dest H' y,
|
||||
show eventually (λ x, f x ≥ y) F,
|
||||
from eventually_mpr H (eventually_mpr this (eventually_of_forall _ (take x, le.trans))))
|
||||
|
||||
theorem id_approaches_infty_at_infty : @id Y ⟶ ∞ [at ∞] := tendsto_id
|
||||
end approaches_infty
|
||||
|
||||
|
||||
|
@ -363,39 +408,48 @@ end approaches_infty
|
|||
section approaches_ninfty
|
||||
variable [linear_strong_order_pair Y]
|
||||
|
||||
abbreviation approaches_ninfty (f : X → Y) := tendsto f at_ninfty
|
||||
abbreviation approaches_ninfty (f : X → Y) := tendsto f [at -∞]
|
||||
|
||||
notation f ` ⟶ ` -∞ := tendsto f at_ninfty
|
||||
notation f ` ⟶ ` -∞ := tendsto f [at -∞]
|
||||
|
||||
theorem approaches_ninfty_intro [inhabited Y] {f : X → Y} {F : filter X}
|
||||
section
|
||||
open classical
|
||||
|
||||
theorem approaches_ninfty_intro {f : X → Y} {F : filter X}
|
||||
(H : ∀ y, eventually (λ x, f x ≤ y) F) :
|
||||
(f ⟶ -∞) F :=
|
||||
tendsto_of_forall_eventually
|
||||
(take P,
|
||||
suppose eventually P at_ninfty,
|
||||
obtain z (Hz : ∀ y, y ≤ z → P y), from exists_forall_le_imp_of_eventually_at_ninfty this,
|
||||
have ∀ x, f x ≤ z → P (f x), from take x, Hz (f x),
|
||||
have eventually (λ x, P (f x)) F, from eventually_mono (H z) this,
|
||||
show eventually P (mapfilter f F), from eventually_mapfilter this)
|
||||
tendsto_intro
|
||||
(take P, assume eP : eventually P [at -∞],
|
||||
if H' : nonempty Y then
|
||||
have inhabited Y, from inhabited_of_nonempty H',
|
||||
obtain z (Hz : ∀ y, y ≤ z → P y), from eventually_at_ninfty_dest eP,
|
||||
have ∀ x, f x ≤ z → P (f x), from take x, Hz (f x),
|
||||
show eventually (λ x, P (f x)) F, from eventually_mono (H z) this
|
||||
else
|
||||
show eventually (λ x, P (f x)) F, from eventually_of_forall F
|
||||
take x, absurd (nonempty.intro (f x)) H')
|
||||
end
|
||||
|
||||
theorem approaches_ninfty_elim {f : X → Y} {F : filter X} (H : (f ⟶ -∞) F) (y : Y) :
|
||||
theorem approaches_ninfty_dest {f : X → Y} {F : filter X} (H : (f ⟶ -∞) F) (y : Y) :
|
||||
eventually (λ x, f x ≤ y) F :=
|
||||
have eventually (λ x, x ≤ y) at_ninfty, from eventually_at_ninfty (take x, suppose x ≤ y, this),
|
||||
have eventually (λ x, x ≤ y) (mapfilter f F), from H this,
|
||||
show eventually (λ x, f x ≤ y) F, from eventually_of_eventually_mapfilter this
|
||||
have eventually (λ x, x ≤ y) [at -∞],
|
||||
from eventually_at_ninfty_intro (take x, suppose x ≤ y, this),
|
||||
show eventually (λ x, f x ≤ y) F, from tendsto_dest H this
|
||||
|
||||
theorem approaches_ninfty_iff [inhabited Y] (f : X → Y) (F : filter X) :
|
||||
theorem approaches_ninfty_iff (f : X → Y) (F : filter X) :
|
||||
(f ⟶ -∞) F ↔ ∀ y, eventually (λ x, f x ≤ y) F :=
|
||||
iff.intro approaches_ninfty_elim approaches_ninfty_intro
|
||||
iff.intro approaches_ninfty_dest approaches_ninfty_intro
|
||||
|
||||
theorem approaches_ninfty_of_eventually_le [inhabited Y] {f g : X → Y} {F : filter X}
|
||||
theorem approaches_ninfty_of_eventually_le {f g : X → Y} {F : filter X}
|
||||
(H : eventually (λ x, f x ≤ g x) F) (H' : (g ⟶ -∞) F) :
|
||||
(f ⟶ -∞) F :=
|
||||
approaches_ninfty_intro (take y,
|
||||
have eventually (λ x, g x ≤ y) F, from approaches_ninfty_elim H' y,
|
||||
show eventually (λ x, f x ≤ y) F, from
|
||||
eventually_mpr H (eventually_mpr this (eventually_of_forall _
|
||||
(take x H₁ H₂, le.trans H₂ H₁))))
|
||||
have eventually (λ x, g x ≤ y) F, from approaches_ninfty_dest H' y,
|
||||
show eventually (λ x, f x ≤ y) F,
|
||||
from eventually_mpr H (eventually_mpr this
|
||||
(eventually_of_forall _ (take x H₁ H₂, le.trans H₂ H₁))))
|
||||
|
||||
theorem id_approaches_ninfty_at_ninfty : @id Y ⟶ -∞ [at -∞] := tendsto_id
|
||||
end approaches_ninfty
|
||||
|
||||
|
||||
|
@ -408,15 +462,16 @@ section nhds_filter
|
|||
|
||||
definition nhds (x : X) : filter X := Inf (principal ' {s | Open s ∧ x ∈ s})
|
||||
|
||||
proposition eventually_nhds {x : X} {s : set X} (Os : Open s) (xs : x ∈ s) (H : ∀₀ x ∈ s, P x) :
|
||||
proposition eventually_nhds_intro {x : X} {s : set X}
|
||||
(Os : Open s) (xs : x ∈ s) (H : ∀₀ x ∈ s, P x) :
|
||||
eventually P (nhds x) :=
|
||||
eventually_Inf (mem_image_of_mem _ (and.intro Os xs)) (eventually_principal H)
|
||||
|
||||
proposition eventually_mem_nhds {x : X} {s : set X} (Os : Open s) (xs : x ∈ s) :
|
||||
eventually (λ x, x ∈ s) (nhds x) :=
|
||||
eventually_nhds Os xs (λ x Hx, Hx)
|
||||
eventually_nhds_intro Os xs (λ x Hx, Hx)
|
||||
|
||||
proposition exists_of_eventually_nhds {x : X} (H : eventually P (nhds x)) :
|
||||
proposition eventually_nhds_elim {x : X} (H : eventually P (nhds x)) :
|
||||
∃ s, Open s ∧ x ∈ s ∧ ∀₀ x ∈ s, P x :=
|
||||
let princS := principal ' {s | Open s ∧ x ∈ s} in
|
||||
have principal univ ∈ princS,
|
||||
|
@ -439,8 +494,8 @@ section nhds_filter
|
|||
|
||||
proposition eventually_nhds_iff (x : X) :
|
||||
eventually P (nhds x) ↔ ∃ s, Open s ∧ x ∈ s ∧ ∀₀ x ∈ s, P x :=
|
||||
iff.intro exists_of_eventually_nhds
|
||||
(assume H, obtain s [Os [xs Hs]], from H, eventually_nhds Os xs Hs)
|
||||
iff.intro eventually_nhds_elim
|
||||
(assume H, obtain s [Os [xs Hs]], from H, eventually_nhds_intro Os xs Hs)
|
||||
end nhds_filter
|
||||
|
||||
|
||||
|
@ -453,11 +508,19 @@ section at_within
|
|||
|
||||
notation [at x ` within ` s] := at_within x s
|
||||
|
||||
proposition eventually_at_within {x : X} {s t : set X} (Os : Open s) (xs : x ∈ s)
|
||||
proposition at_within_le_nhds (x : X) (s : set X) : [at x within s] ≤ nhds x :=
|
||||
inf_le_left _ _
|
||||
|
||||
proposition at_within_le_at_within (x : X) {s t : set X} (H : s ⊆ t) :
|
||||
[at x within s] ≤ [at x within t] :=
|
||||
have s \ '{x} ⊆ t \ '{x}, by rewrite diff_eq; apply inter_subset_inter_right _ H,
|
||||
le_inf (inf_le_left _ _) (le.trans !inf_le_right (principal_le_principal this))
|
||||
|
||||
proposition eventually_at_within_intro {x : X} {s t : set X} (Os : Open s) (xs : x ∈ s)
|
||||
(Hs : ∀₀ y ∈ s, y ≠ x → y ∈ t → P y) :
|
||||
eventually P [at x within t] :=
|
||||
have H₁ : eventually (λ y, y ≠ x → y ∈ t → P y) (nhds x),
|
||||
from eventually_nhds Os xs Hs,
|
||||
from eventually_nhds_intro Os xs Hs,
|
||||
eventually_inf H₁ _ (mem_principal _)
|
||||
(take y, assume Hy,
|
||||
have H : y ∈ t \ '{x}, from and.right Hy,
|
||||
|
@ -466,11 +529,11 @@ section at_within
|
|||
show false, from and.right H this,
|
||||
show P y, from and.left Hy `y ≠ x` (and.left H))
|
||||
|
||||
proposition exists_of_eventually_at_within {x : X} {t : set X}
|
||||
proposition eventually_at_within_dest {x : X} {t : set X}
|
||||
(H : eventually P [at x within t]) :
|
||||
∃ s, Open s ∧ x ∈ s ∧ ∀₀ y ∈ s, y ≠ x → y ∈ t → P y :=
|
||||
obtain P₁ [eP₁nhds [P₂ [eP₂princ (H' : P ⊇ P₁ ∩ P₂)]]], from exists_of_eventually_inf H,
|
||||
obtain s [Os [xs Hs]], from exists_of_eventually_nhds eP₁nhds,
|
||||
obtain s [Os [xs Hs]], from eventually_nhds_elim eP₁nhds,
|
||||
have Ht : ∀₀ y ∈ t \ '{x}, P₂ y, from subset_of_eventually_principal eP₂princ,
|
||||
exists.intro s (and.intro Os (and.intro xs
|
||||
(take y, assume ys ynex yt,
|
||||
|
@ -479,39 +542,55 @@ section at_within
|
|||
|
||||
theorem eventually_at_within_iff (x : X) {s : set X} :
|
||||
eventually P [at x within s] ↔ ∃ t, Open t ∧ x ∈ t ∧ ∀₀ y ∈ t, y ≠ x → y ∈ s → P y :=
|
||||
iff.intro exists_of_eventually_at_within
|
||||
(assume H, obtain t [Ot [xt Ht]], from H, eventually_at_within Ot xt Ht)
|
||||
iff.intro eventually_at_within_dest
|
||||
(assume H, obtain t [Ot [xt Ht]], from H, eventually_at_within_intro Ot xt Ht)
|
||||
|
||||
theorem eventually_at_within_of_subset {x : X} {s t : set X} (ssubt : s ⊆ t)
|
||||
(H : eventually P [at x within t]) :
|
||||
eventually P [at x within s] :=
|
||||
eventually_of_le H (at_within_le_at_within x ssubt)
|
||||
|
||||
abbreviation at_elt (x : X) : filter X := at_within x univ
|
||||
|
||||
notation [at x] := at_elt x
|
||||
|
||||
proposition eventually_at {x : X} {s : set X} (Os : Open s) (xs : x ∈ s)
|
||||
proposition eventually_at_intro {x : X} {s : set X} (Os : Open s) (xs : x ∈ s)
|
||||
(Hs : ∀₀ y ∈ s, y ≠ x → P y) :
|
||||
eventually P [at x] :=
|
||||
eventually_at_within Os xs (take y, assume ys ynex yuniv, Hs ys ynex)
|
||||
eventually_at_within_intro Os xs (take y, assume ys ynex yuniv, Hs ys ynex)
|
||||
|
||||
proposition exists_of_eventually_at {x : X} (H : eventually P [at x]) :
|
||||
proposition eventually_at_dest {x : X} (H : eventually P [at x]) :
|
||||
∃ s, Open s ∧ x ∈ s ∧ ∀₀ y ∈ s, y ≠ x → P y :=
|
||||
obtain s [Os [xs Hs]], from exists_of_eventually_at_within H,
|
||||
obtain s [Os [xs Hs]], from eventually_at_within_dest H,
|
||||
exists.intro s (and.intro Os (and.intro xs (λ y ys ynex, Hs y ys ynex trivial)))
|
||||
|
||||
proposition eventually_at_iff (x : X) :
|
||||
eventually P [at x] ↔ ∃ s, Open s ∧ x ∈ s ∧ ∀₀ y ∈ s, y ≠ x → P y :=
|
||||
iff.intro exists_of_eventually_at
|
||||
(assume H, obtain s [Os [xs Hs]], from H, eventually_at Os xs Hs)
|
||||
iff.intro eventually_at_dest
|
||||
(assume H, obtain s [Os [xs Hs]], from H, eventually_at_intro Os xs Hs)
|
||||
|
||||
proposition eventually_at_within_of_eventually_at {x : X} (s : set X) (H : eventually P [at x]) :
|
||||
eventually P [at x within s] :=
|
||||
eventually_at_within_of_subset (subset_univ s) H
|
||||
|
||||
proposition at_within_eq_of_Open {x : X} {s : set X} (Os : Open s) (xs : x ∈ s) :
|
||||
[at x within s] = [at x] :=
|
||||
filter.eq (ext (take P, iff.intro
|
||||
(assume H,
|
||||
obtain t [Ot [xt Ht]], from exists_of_eventually_at_within H,
|
||||
eventually_at (Open_inter Os Ot) (mem_inter xs xt)
|
||||
obtain t [Ot [xt Ht]], from eventually_at_within_dest H,
|
||||
eventually_at_intro (Open_inter Os Ot) (mem_inter xs xt)
|
||||
(λ y Hy yne, Ht _ (and.right Hy) yne (and.left Hy)))
|
||||
(assume H,
|
||||
obtain t [Ot [xt Ht]], from exists_of_eventually_at H,
|
||||
eventually_at_within (Open_inter Os Ot) (mem_inter xs xt)
|
||||
obtain t [Ot [xt Ht]], from eventually_at_dest H,
|
||||
eventually_at_within_intro (Open_inter Os Ot) (mem_inter xs xt)
|
||||
(λ y Hy yne ys, Ht _ (and.right Hy) yne))))
|
||||
|
||||
proposition tendsto_at_within_of_subset {f : X → Y} {F : filter Y} {x : X } {s t : set X}
|
||||
(ssubt : s ⊆ t) (H : tendsto f F [at x within t]) :
|
||||
tendsto f F [at x within s] :=
|
||||
tendsto_intro (take P eP,
|
||||
have eventually (λ x, P (f x)) [at x within t], from tendsto_dest H eP,
|
||||
show eventually (λ x, P (f x)) [at x within s], from eventually_at_within_of_subset ssubt this)
|
||||
end at_within
|
||||
|
||||
|
||||
|
@ -526,14 +605,14 @@ section at_left_at_right
|
|||
notation [at x`-]` := at_left x
|
||||
notation [at x`+]` := at_right x
|
||||
|
||||
proposition eventually_at_left {x : X} {s : set X} (Os : Open s) (xs : x ∈ s)
|
||||
proposition eventually_at_left_intro {x : X} {s : set X} (Os : Open s) (xs : x ∈ s)
|
||||
(H : ∀₀ y ∈ s, y < x → P y) :
|
||||
eventually P [at x-] :=
|
||||
eventually_at_within Os xs (take y, assume ys ynex yltx, H ys yltx)
|
||||
eventually_at_within_intro Os xs (take y, assume ys ynex yltx, H ys yltx)
|
||||
|
||||
proposition exists_of_eventually_at_left {x : X} (H : eventually P [at x-]) :
|
||||
proposition eventually_at_left_dest {x : X} (H : eventually P [at x-]) :
|
||||
∃ s, Open s ∧ x ∈ s ∧ ∀₀ y ∈ s, y < x → P y :=
|
||||
obtain s [Os [xs Hs]], from exists_of_eventually_at_within H,
|
||||
obtain s [Os [xs Hs]], from eventually_at_within_dest H,
|
||||
exists.intro s (and.intro Os (and.intro xs
|
||||
(take y, assume ys yltx,
|
||||
show P y, from Hs y ys (ne_of_lt yltx) yltx)))
|
||||
|
@ -541,18 +620,18 @@ section at_left_at_right
|
|||
variable (P)
|
||||
proposition eventually_at_left_iff (x : X) :
|
||||
eventually P [at x-] ↔ ∃ s, Open s ∧ x ∈ s ∧ ∀₀ y ∈ s, y < x → P y :=
|
||||
iff.intro exists_of_eventually_at_left
|
||||
(take H, obtain s [Os [xs Hs]], from H, eventually_at_left Os xs Hs)
|
||||
iff.intro eventually_at_left_dest
|
||||
(take H, obtain s [Os [xs Hs]], from H, eventually_at_left_intro Os xs Hs)
|
||||
|
||||
variable {P}
|
||||
proposition eventually_at_right {x : X} {s : set X} (Os : Open s) (xs : x ∈ s)
|
||||
proposition eventually_at_right_intro {x : X} {s : set X} (Os : Open s) (xs : x ∈ s)
|
||||
(H : ∀₀ y ∈ s, y > x → P y) :
|
||||
eventually P [at x+] :=
|
||||
eventually_at_within Os xs (take y, assume ys ynex yltx, H ys yltx)
|
||||
eventually_at_within_intro Os xs (take y, assume ys ynex yltx, H ys yltx)
|
||||
|
||||
proposition exists_of_eventually_at_right {x : X} (H : eventually P [at x+]) :
|
||||
proposition eventually_at_right_dest {x : X} (H : eventually P [at x+]) :
|
||||
∃ s, Open s ∧ x ∈ s ∧ ∀₀ y ∈ s, y > x → P y :=
|
||||
obtain s [Os [xs Hs]], from exists_of_eventually_at_within H,
|
||||
obtain s [Os [xs Hs]], from eventually_at_within_dest H,
|
||||
exists.intro s (and.intro Os (and.intro xs
|
||||
(take y, assume ys yltx,
|
||||
show P y, from Hs y ys (ne_of_gt yltx) yltx)))
|
||||
|
@ -560,8 +639,8 @@ section at_left_at_right
|
|||
variable (P)
|
||||
proposition eventually_at_right_iff (x : X) :
|
||||
eventually P [at x+] ↔ ∃ s, Open s ∧ x ∈ s ∧ ∀₀ y ∈ s, y > x → P y :=
|
||||
iff.intro exists_of_eventually_at_right
|
||||
(take H, obtain s [Os [xs Hs]], from H, eventually_at_right Os xs Hs)
|
||||
iff.intro eventually_at_right_dest
|
||||
(take H, obtain s [Os [xs Hs]], from H, eventually_at_right_intro Os xs Hs)
|
||||
end at_left_at_right
|
||||
|
||||
|
||||
|
@ -577,22 +656,160 @@ section approaches
|
|||
|
||||
proposition approaches_intro (H : ∀ s, Open s → y ∈ s → eventually (λ x, f x ∈ s) F) :
|
||||
(f ⟶ y) F :=
|
||||
tendsto_of_forall_eventually
|
||||
tendsto_intro
|
||||
(take P, assume eventuallyP,
|
||||
obtain s [Os [(ys : y ∈ s) (H' : ∀₀ y' ∈ s, P y')]],
|
||||
from exists_of_eventually_nhds eventuallyP,
|
||||
have eventually (λ x, P (f x)) F, from eventually_mono (H s Os ys) (λ x Hx, H' Hx),
|
||||
show eventually P (mapfilter f F), from eventually_mapfilter this)
|
||||
from eventually_nhds_elim eventuallyP,
|
||||
show eventually (λ x, P (f x)) F, from eventually_mono (H s Os ys) (λ x Hx, H' Hx))
|
||||
|
||||
proposition approaches_elim (H : (f ⟶ y) F) {s : set Y} (Os : Open s) (ys : y ∈ s) :
|
||||
eventually (λ x, f x ∈ s) F :=
|
||||
have eventually (λ y', y' ∈ s) (mapfilter f F),
|
||||
from eventually_mapfilter_of_tendsto H (eventually_mem_nhds Os ys),
|
||||
eventually_of_eventually_mapfilter this
|
||||
tendsto_dest H (eventually_mem_nhds Os ys)
|
||||
|
||||
variables (F f y)
|
||||
proposition approaches_iff : (f ⟶ y) F ↔ (∀ s, Open s → y ∈ s → eventually (λ x, f x ∈ s) F) :=
|
||||
iff.intro approaches_elim approaches_intro
|
||||
end approaches
|
||||
|
||||
/-
|
||||
Properties of convergence at infty on nat and real (and more generally ordered semigroups)
|
||||
-/
|
||||
|
||||
section
|
||||
open nat
|
||||
|
||||
proposition eventually_at_infty_of_eventually_succ_at_infty {P : ℕ → Prop}
|
||||
(H : eventually (λ n, P (succ n)) [at ∞]) : eventually P [at ∞] :=
|
||||
obtain x (Hx : ∀ y, y ≥ x → P (succ y)), from eventually_at_infty_dest H,
|
||||
eventually_at_infty_intro (take y, suppose y > x,
|
||||
have y ≥ succ x, from succ_le_of_lt this,
|
||||
have pred y ≥ pred (succ x), from pred_le_pred this,
|
||||
have pred y ≥ x, by rewrite pred_succ at this; assumption,
|
||||
have P (succ (pred y)), from Hx _ this,
|
||||
show P y,
|
||||
by rewrite (succ_pred_of_pos (lt_of_lt_of_le !zero_lt_succ `succ x ≤ y`)) at this; assumption)
|
||||
|
||||
proposition eventually_succ_at_infty {P : ℕ → Prop}
|
||||
(H : eventually (λ n, P n) [at ∞]) : eventually (λ n, P (succ n)) [at ∞] :=
|
||||
obtain x (Hx : ∀ y, y ≥ x → P y), from eventually_at_infty_dest H,
|
||||
eventually_at_infty_intro (take y, suppose y > x,
|
||||
show P (succ y), from Hx _ (le_of_lt (lt.trans this !lt_succ_self)))
|
||||
|
||||
proposition eventually_succ_at_infty_iff (P : ℕ → Prop) :
|
||||
(eventually (λ n, P (succ n)) [at ∞]) ↔ (eventually P [at ∞]) :=
|
||||
iff.intro eventually_at_infty_of_eventually_succ_at_infty eventually_succ_at_infty
|
||||
|
||||
proposition tendsto_succ_at_infty {f : ℕ → Y} {F : filter Y} (H : tendsto f F [at ∞]) :
|
||||
tendsto (λ n, f (succ n)) F [at ∞] :=
|
||||
tendsto_intro (take P, suppose eventually P F,
|
||||
eventually_succ_at_infty (tendsto_dest H this))
|
||||
|
||||
proposition tendsto_at_infty_of_tendsto_succ_at_infty {f : ℕ → Y} {F : filter Y}
|
||||
(H : tendsto (λ n, f (succ n)) F [at ∞]) :
|
||||
tendsto f F [at ∞] :=
|
||||
tendsto_intro (take P, suppose eventually P F,
|
||||
eventually_at_infty_of_eventually_succ_at_infty (tendsto_dest H this))
|
||||
|
||||
proposition tendsto_succ_at_infty_iff (f : ℕ → Y) (F : filter Y) :
|
||||
(tendsto (λ n, f (succ n)) F [at ∞]) ↔ (tendsto f F [at ∞]) :=
|
||||
iff.intro tendsto_at_infty_of_tendsto_succ_at_infty tendsto_succ_at_infty
|
||||
|
||||
proposition succ_approaches_infty_at_infty : (λ n, succ n) ⟶ ∞ [at ∞] :=
|
||||
tendsto_succ_at_infty id_approaches_infty_at_infty
|
||||
|
||||
-- alterantive proof:
|
||||
-- approaches_infty_intro (take n,
|
||||
-- eventually_at_infty_intro (take y, suppose y ≥ n,
|
||||
-- show succ y ≥ n, from le.trans this (le_of_lt (lt_succ_self y))))
|
||||
|
||||
-- another alternative proof:
|
||||
-- approaches_infty_of_eventually_ge
|
||||
-- (eventually_of_forall _ (λ x, le_of_lt (lt_succ_self x))
|
||||
-- id_approaches_infty_at_infty
|
||||
|
||||
-- TODO: for these next proofs: we should unify nat and group cases, with a class
|
||||
-- with the axiom x ≤ y → y - x + x = y.
|
||||
-- in the meanwhile, put ' on these versions
|
||||
|
||||
-- TODO: add_left versions
|
||||
|
||||
proposition eventually_at_infty_of_eventually_add_right_at_infty' {P : ℕ → Prop} {k : ℕ}
|
||||
(H : eventually (λ n, P (n + k)) [at ∞]) : eventually P [at ∞] :=
|
||||
obtain x (Hx : ∀ y, y ≥ x → P (y + k)), from eventually_at_infty_dest H,
|
||||
eventually_at_infty_intro (take y, suppose y ≥ x + k,
|
||||
have y - k ≥ x, from nat.le_sub_of_add_le this,
|
||||
have H' : P (y - k + k), from Hx _ this,
|
||||
have y ≥ k, from le.trans !le_add_left `x + k ≤ y`,
|
||||
show P y, by rewrite [nat.sub_add_cancel this at H']; exact H')
|
||||
|
||||
proposition eventually_add_right_at_infty' {P : ℕ → Prop} (k : ℕ)
|
||||
(H : eventually (λ n, P n) [at ∞]) : eventually (λ n, P (n + k)) [at ∞] :=
|
||||
obtain x (Hx : ∀ y, y ≥ x → P y), from eventually_at_infty_dest H,
|
||||
eventually_at_infty_intro (take y, suppose y ≥ x,
|
||||
have y + k ≥ x, from le.trans this !le_add_right,
|
||||
show P (y + k), from Hx _ this)
|
||||
|
||||
proposition eventually_add_right_at_infty_iff' (k : ℕ) (P : ℕ → Prop) :
|
||||
(eventually (λ n, P (n + k)) [at ∞]) ↔ (eventually P [at ∞]) :=
|
||||
iff.intro eventually_at_infty_of_eventually_add_right_at_infty' (eventually_add_right_at_infty' k)
|
||||
|
||||
proposition tendsto_add_right_at_infty' {f : ℕ → Y} {F : filter Y}
|
||||
(H : tendsto f F [at ∞]) (k : ℕ) :
|
||||
tendsto (λ n, f (n + k)) F [at ∞] :=
|
||||
tendsto_intro (take P, suppose eventually P F,
|
||||
eventually_add_right_at_infty' k (tendsto_dest H this))
|
||||
|
||||
proposition tendsto_at_infty_of_tendsto_add_right_at_infty' {f : ℕ → Y} {F : filter Y} {k : ℕ}
|
||||
(H : tendsto (λ n, f (n + k)) F [at ∞]) :
|
||||
tendsto f F [at ∞] :=
|
||||
tendsto_intro (take P, suppose eventually P F,
|
||||
eventually_at_infty_of_eventually_add_right_at_infty' (tendsto_dest H this))
|
||||
|
||||
proposition tendsto_add_right_at_infty_iff' (f : ℕ → Y) (F : filter Y) (k : ℕ) :
|
||||
(tendsto (λ n, f (n + k)) F [at ∞]) ↔ (tendsto f F [at ∞]) :=
|
||||
iff.intro tendsto_at_infty_of_tendsto_add_right_at_infty' (λ H, tendsto_add_right_at_infty' H k)
|
||||
end
|
||||
|
||||
section
|
||||
-- TODO: move to algebra?
|
||||
private proposition inhabited_of_has_zero [trans_instance] (H : has_zero X) : inhabited X :=
|
||||
inhabited.mk 0
|
||||
|
||||
variable [decidable_linear_ordered_comm_group X]
|
||||
|
||||
proposition eventually_at_infty_of_eventually_add_right_at_infty {P : X → Prop} {k : X}
|
||||
(H : eventually (λ n, P (n + k)) [at ∞]) : eventually P [at ∞] :=
|
||||
obtain x (Hx : ∀ y, y ≥ x → P (y + k)), from eventually_at_infty_dest H,
|
||||
eventually_at_infty_intro (take y, suppose y ≥ x + k,
|
||||
have y - k ≥ x, from le_sub_right_of_add_le this,
|
||||
have H' : P (y - k + k), from Hx _ this,
|
||||
show P y, by rewrite [sub_add_cancel at H']; exact H')
|
||||
|
||||
proposition eventually_add_right_at_infty {P : X → Prop} (k : X)
|
||||
(H : eventually (λ n, P n) [at ∞]) : eventually (λ n, P (n + k)) [at ∞] :=
|
||||
have eventually (λ n, P (n + -k + k)) [at ∞],
|
||||
from eventually_congr (take x, by rewrite [neg_add_cancel_right]) H,
|
||||
eventually_at_infty_of_eventually_add_right_at_infty this
|
||||
|
||||
proposition eventually_add_right_at_infty_iff (k : X) (P : X → Prop) :
|
||||
(eventually (λ n, P (n + k)) [at ∞]) ↔ (eventually P [at ∞]) :=
|
||||
iff.intro eventually_at_infty_of_eventually_add_right_at_infty (eventually_add_right_at_infty k)
|
||||
|
||||
proposition tendsto_add_right_at_infty {f : X → Y} {F : filter Y}
|
||||
(H : tendsto f F [at ∞]) (k : X) :
|
||||
tendsto (λ n, f (n + k)) F [at ∞] :=
|
||||
tendsto_intro (take P, suppose eventually P F,
|
||||
eventually_add_right_at_infty k (tendsto_dest H this))
|
||||
|
||||
proposition tendsto_at_infty_of_tendsto_add_right_at_infty {f : X → Y} {F : filter Y} {k : X}
|
||||
(H : tendsto (λ n, f (n + k)) F [at ∞]) :
|
||||
tendsto f F [at ∞] :=
|
||||
tendsto_intro (take P, suppose eventually P F,
|
||||
eventually_at_infty_of_eventually_add_right_at_infty (tendsto_dest H this))
|
||||
|
||||
proposition tendsto_add_right_at_infty_iff (f : X → Y) (F : filter Y) (k : X) :
|
||||
(tendsto (λ n, f (n + k)) F [at ∞]) ↔ (tendsto f F [at ∞]) :=
|
||||
iff.intro tendsto_at_infty_of_tendsto_add_right_at_infty (λ H, tendsto_add_right_at_infty H k)
|
||||
end
|
||||
|
||||
end topology
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
theories.topology
|
||||
=================
|
||||
|
||||
* [approaches](approaches.lean) : a general theory of limits, based on filters
|
||||
* [basic](basic.lean) : open and closed sets, separation axioms, and generated topologies
|
||||
* [limit](limit.lean) : a general theory of limits, based on filters
|
||||
* [order_topology](order_topology.lean)
|
||||
* [continuous](continuous.lean) : continuous functions
|
Loading…
Reference in a new issue