feat(library/unifier): add flag for enabling/disabling expensive extensions in the unifier
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
f57fc33442
commit
de05c041c7
4 changed files with 261 additions and 17 deletions
|
@ -28,6 +28,9 @@ namespace lean {
|
|||
static name g_unifier_max_steps {"unifier", "max_steps"};
|
||||
RegisterUnsignedOption(g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS, "(unifier) maximum number of steps");
|
||||
unsigned get_unifier_max_steps(options const & opts) { return opts.get_unsigned(g_unifier_max_steps, LEAN_DEFAULT_UNIFIER_MAX_STEPS); }
|
||||
static name g_unifier_expensive {"unifier", "expensive"};
|
||||
RegisterBoolOption(g_unifier_expensive, LEAN_DEFAULT_UNIFIER_EXPENSIVE, "(unifier) enable/disable expensive (and more complete) procedure");
|
||||
bool get_unifier_expensive(options const & opts) { return opts.get_bool(g_unifier_expensive, LEAN_DEFAULT_UNIFIER_EXPENSIVE); }
|
||||
|
||||
/** \brief Return true iff \c [begin_locals, end_locals) contains \c local */
|
||||
template<typename It> bool contains_local(expr const & local, It const & begin_locals, It const & end_locals) {
|
||||
|
@ -253,6 +256,7 @@ struct unifier_fn {
|
|||
bool m_use_exception; //!< True if we should throw an exception when there are no more solutions.
|
||||
unsigned m_max_steps;
|
||||
unsigned m_num_steps;
|
||||
bool m_expensive;
|
||||
bool m_first; //!< True if we still have to generate the first solution.
|
||||
unsigned m_next_assumption_idx; //!< Next assumption index.
|
||||
unsigned m_next_cidx; //!< Next constraint index.
|
||||
|
@ -344,9 +348,9 @@ struct unifier_fn {
|
|||
|
||||
unifier_fn(environment const & env, unsigned num_cs, constraint const * cs,
|
||||
name_generator const & ngen, substitution const & s,
|
||||
bool use_exception, unsigned max_steps):
|
||||
bool use_exception, unsigned max_steps, bool expensive):
|
||||
m_env(env), m_ngen(ngen), m_subst(s), m_plugin(get_unifier_plugin(env)),
|
||||
m_use_exception(use_exception), m_max_steps(max_steps), m_num_steps(0) {
|
||||
m_use_exception(use_exception), m_max_steps(max_steps), m_num_steps(0), m_expensive(expensive) {
|
||||
m_tc[0] = mk_type_checker_with_hints(env, m_ngen.mk_child(), false);
|
||||
m_tc[1] = mk_type_checker_with_hints(env, m_ngen.mk_child(), true);
|
||||
m_next_assumption_idx = 0;
|
||||
|
@ -1471,12 +1475,14 @@ struct unifier_fn {
|
|||
buffer<constraints> alts;
|
||||
process_flex_rigid_core(lhs, rhs, j, relax, alts);
|
||||
append_auxiliary_constraints(alts, to_list(aux.begin(), aux.end()));
|
||||
expr rhs_whnf = whnf(rhs, j, relax, aux);
|
||||
if (rhs_whnf != rhs) {
|
||||
buffer<constraints> alts2;
|
||||
process_flex_rigid_core(lhs, rhs_whnf, j, relax, alts2);
|
||||
append_auxiliary_constraints(alts2, to_list(aux.begin(), aux.end()));
|
||||
alts.append(alts2);
|
||||
if (m_expensive) {
|
||||
expr rhs_whnf = whnf(rhs, j, relax, aux);
|
||||
if (rhs_whnf != rhs) {
|
||||
buffer<constraints> alts2;
|
||||
process_flex_rigid_core(lhs, rhs_whnf, j, relax, alts2);
|
||||
append_auxiliary_constraints(alts2, to_list(aux.begin(), aux.end()));
|
||||
alts.append(alts2);
|
||||
}
|
||||
}
|
||||
|
||||
if (alts.empty()) {
|
||||
|
@ -1674,21 +1680,21 @@ lazy_list<substitution> unify(std::shared_ptr<unifier_fn> u) {
|
|||
}
|
||||
|
||||
lazy_list<substitution> unify(environment const & env, unsigned num_cs, constraint const * cs, name_generator const & ngen,
|
||||
bool use_exception, unsigned max_steps) {
|
||||
return unify(std::make_shared<unifier_fn>(env, num_cs, cs, ngen, substitution(), use_exception, max_steps));
|
||||
bool use_exception, unsigned max_steps, bool expensive) {
|
||||
return unify(std::make_shared<unifier_fn>(env, num_cs, cs, ngen, substitution(), use_exception, max_steps, expensive));
|
||||
}
|
||||
|
||||
lazy_list<substitution> unify(environment const & env, unsigned num_cs, constraint const * cs, name_generator const & ngen,
|
||||
bool use_exception, options const & o) {
|
||||
return unify(env, num_cs, cs, ngen, use_exception, get_unifier_max_steps(o));
|
||||
return unify(env, num_cs, cs, ngen, use_exception, get_unifier_max_steps(o), get_unifier_expensive(o));
|
||||
}
|
||||
|
||||
lazy_list<substitution> unify(environment const & env, expr const & lhs, expr const & rhs, name_generator const & ngen,
|
||||
bool relax, substitution const & s, unsigned max_steps) {
|
||||
bool relax, substitution const & s, unsigned max_steps, bool expensive) {
|
||||
substitution new_s = s;
|
||||
expr _lhs = new_s.instantiate(lhs);
|
||||
expr _rhs = new_s.instantiate(rhs);
|
||||
auto u = std::make_shared<unifier_fn>(env, 0, nullptr, ngen, new_s, false, max_steps);
|
||||
auto u = std::make_shared<unifier_fn>(env, 0, nullptr, ngen, new_s, false, max_steps, expensive);
|
||||
if (!u->m_tc[relax]->is_def_eq(_lhs, _rhs))
|
||||
return lazy_list<substitution>();
|
||||
else
|
||||
|
@ -1697,7 +1703,7 @@ lazy_list<substitution> unify(environment const & env, expr const & lhs, expr co
|
|||
|
||||
lazy_list<substitution> unify(environment const & env, expr const & lhs, expr const & rhs, name_generator const & ngen,
|
||||
bool relax, substitution const & s, options const & o) {
|
||||
return unify(env, lhs, rhs, ngen, relax, s, get_unifier_max_steps(o));
|
||||
return unify(env, lhs, rhs, ngen, relax, s, get_unifier_max_steps(o), get_unifier_expensive(o));
|
||||
}
|
||||
|
||||
static int unify_simple(lua_State * L) {
|
||||
|
|
|
@ -19,6 +19,10 @@ Author: Leonardo de Moura
|
|||
#define LEAN_DEFAULT_UNIFIER_MAX_STEPS 10000
|
||||
#endif
|
||||
|
||||
#ifndef LEAN_DEFAULT_UNIFIER_EXPENSIVE
|
||||
#define LEAN_DEFAULT_UNIFIER_EXPENSIVE false
|
||||
#endif
|
||||
|
||||
namespace lean {
|
||||
unsigned get_unifier_max_steps(options const & opts);
|
||||
bool get_unifier_unfold_opaque(options const & opts);
|
||||
|
@ -37,11 +41,11 @@ unify_status unify_simple(substitution & s, level const & lhs, level const & rhs
|
|||
unify_status unify_simple(substitution & s, constraint const & c);
|
||||
|
||||
lazy_list<substitution> unify(environment const & env, unsigned num_cs, constraint const * cs, name_generator const & ngen,
|
||||
bool use_exception = true, unsigned max_steps = LEAN_DEFAULT_UNIFIER_MAX_STEPS);
|
||||
bool use_exception = true, unsigned max_steps = LEAN_DEFAULT_UNIFIER_MAX_STEPS, bool expensive = LEAN_DEFAULT_UNIFIER_EXPENSIVE);
|
||||
lazy_list<substitution> unify(environment const & env, unsigned num_cs, constraint const * cs, name_generator const & ngen,
|
||||
bool use_exception, options const & o);
|
||||
lazy_list<substitution> unify(environment const & env, expr const & lhs, expr const & rhs, name_generator const & ngen, bool relax_main_opaque,
|
||||
substitution const & s = substitution(), unsigned max_steps = LEAN_DEFAULT_UNIFIER_MAX_STEPS);
|
||||
substitution const & s = substitution(), unsigned max_steps = LEAN_DEFAULT_UNIFIER_MAX_STEPS, bool expensive = LEAN_DEFAULT_UNIFIER_MAX_STEPS);
|
||||
lazy_list<substitution> unify(environment const & env, expr const & lhs, expr const & rhs, name_generator const & ngen,
|
||||
bool relax_main_opaque, substitution const & s, options const & o);
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
import nat
|
||||
using nat eq_proofs
|
||||
|
||||
set_option unifier.expensive true
|
||||
inductive list (T : Type) : Type :=
|
||||
| nil {} : list T
|
||||
| cons : T → list T → list T
|
||||
|
|
234
tests/lean/slow/list_elab2.lean
Normal file
234
tests/lean/slow/list_elab2.lean
Normal file
|
@ -0,0 +1,234 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
--- Copyright (c) 2014 Parikshit Khanna. All rights reserved.
|
||||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
--- Authors: Parikshit Khanna, Jeremy Avigad
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
-- Theory list
|
||||
-- ===========
|
||||
--
|
||||
-- Basic properties of lists.
|
||||
|
||||
import tactic
|
||||
import nat
|
||||
-- import congr
|
||||
|
||||
set_option unifier.expensive true
|
||||
using nat
|
||||
-- using congr
|
||||
using eq_proofs
|
||||
|
||||
namespace list
|
||||
|
||||
|
||||
-- Type
|
||||
-- ----
|
||||
|
||||
inductive list (T : Type) : Type :=
|
||||
| nil {} : list T
|
||||
| cons : T → list T → list T
|
||||
|
||||
infix `::` : 65 := cons
|
||||
|
||||
section
|
||||
|
||||
variable {T : Type}
|
||||
|
||||
theorem list_induction_on {P : list T → Prop} (l : list T) (Hnil : P nil)
|
||||
(Hind : forall x : T, forall l : list T, forall H : P l, P (cons x l)) : P l :=
|
||||
list_rec Hnil Hind l
|
||||
|
||||
theorem list_cases_on {P : list T → Prop} (l : list T) (Hnil : P nil)
|
||||
(Hcons : forall x : T, forall l : list T, P (cons x l)) : P l :=
|
||||
list_induction_on l Hnil (take x l IH, Hcons x l)
|
||||
|
||||
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
|
||||
|
||||
|
||||
-- Concat
|
||||
-- ------
|
||||
|
||||
definition concat (s t : list T) : list T :=
|
||||
list_rec t (fun x : T, fun l : list T, fun u : list T, cons x u) s
|
||||
|
||||
infixl `++` : 65 := concat
|
||||
|
||||
theorem nil_concat (t : list T) : nil ++ t = t := refl _
|
||||
|
||||
theorem cons_concat (x : T) (s t : list T) : (x :: s) ++ t = x :: (s ++ t) := refl _
|
||||
|
||||
theorem concat_nil (t : list T) : t ++ nil = t :=
|
||||
list_induction_on t (refl _)
|
||||
(take (x : T) (l : list T) (H : concat l nil = l),
|
||||
H ▸ (refl (cons x (concat l nil))))
|
||||
|
||||
theorem concat_nil2 (t : list T) : t ++ nil = t :=
|
||||
list_induction_on t (refl _)
|
||||
(take (x : T) (l : list T) (H : concat l nil = l),
|
||||
-- H ▸ (refl (cons x (concat l nil))))
|
||||
H ▸ (refl (concat (cons x l) nil)))
|
||||
|
||||
theorem concat_assoc (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
|
||||
list_induction_on s (refl _)
|
||||
(take x l,
|
||||
assume H : concat (concat l t) u = concat l (concat t u),
|
||||
H ▸ refl _)
|
||||
|
||||
theorem concat_assoc2 (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
|
||||
list_induction_on s (refl _)
|
||||
(take x l,
|
||||
assume H : concat (concat l t) u = concat l (concat t u),
|
||||
calc concat (concat (cons x l) t) u = cons x (concat (concat l t) u) : refl _
|
||||
... = concat (cons x l) (concat t u) : { H })
|
||||
|
||||
theorem concat_assoc3 (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
|
||||
list_induction_on s (refl _)
|
||||
(take x l,
|
||||
assume H : concat (concat l t) u = concat l (concat t u),
|
||||
calc concat (concat (cons x l) t) u = cons x (concat l (concat t u)) : { H }
|
||||
... = concat (cons x l) (concat t u) : refl _)
|
||||
|
||||
theorem concat_assoc4 (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
|
||||
list_induction_on s (refl _)
|
||||
(take x l,
|
||||
assume H : concat (concat l t) u = concat l (concat t u),
|
||||
calc
|
||||
concat (concat (cons x l) t) u = cons x (concat (concat l t) u) : refl _
|
||||
... = cons x (concat l (concat t u)) : { H }
|
||||
... = concat (cons x l) (concat t u) : refl _)
|
||||
|
||||
-- Length
|
||||
-- ------
|
||||
|
||||
definition length : list T → ℕ := list_rec 0 (fun x l m, succ m)
|
||||
|
||||
-- TODO: cannot replace zero by 0
|
||||
theorem length_nil : length (@nil T) = zero := refl _
|
||||
|
||||
theorem length_cons (x : T) (t : list T) : length (x :: t) = succ (length t) := refl _
|
||||
|
||||
theorem length_concat (s t : list T) : length (s ++ t) = length s + length t :=
|
||||
list_induction_on s
|
||||
(calc
|
||||
length (concat nil t) = length t : refl _
|
||||
... = zero + length t : {symm (add_zero_left (length t))}
|
||||
... = length (@nil T) + length t : refl _)
|
||||
(take x s,
|
||||
assume H : length (concat s t) = length s + length t,
|
||||
calc
|
||||
length (concat (cons x s) t ) = succ (length (concat s t)) : refl _
|
||||
... = succ (length s + length t) : { H }
|
||||
... = succ (length s) + length t : {symm (add_succ_left _ _)}
|
||||
... = length (cons x s) + length t : refl _)
|
||||
|
||||
-- Reverse
|
||||
-- -------
|
||||
|
||||
definition reverse : list T → list T := list_rec nil (fun x l r, r ++ [x])
|
||||
|
||||
theorem reverse_nil : reverse (@nil T) = nil := refl _
|
||||
|
||||
theorem reverse_cons (x : T) (l : list T) : reverse (x :: l) = (reverse l) ++ (cons x nil) := refl _
|
||||
|
||||
-- opaque_hint (hiding reverse)
|
||||
|
||||
theorem reverse_concat (s t : list T) : reverse (s ++ t) = (reverse t) ++ (reverse s) :=
|
||||
list_induction_on s
|
||||
(calc
|
||||
reverse (concat nil t) = reverse t : { nil_concat _ }
|
||||
... = concat (reverse t) nil : symm (concat_nil _)
|
||||
... = concat (reverse t) (reverse nil) : {symm (reverse_nil)})
|
||||
(take x l,
|
||||
assume H : reverse (concat l t) = concat (reverse t) (reverse l),
|
||||
calc
|
||||
reverse (concat (cons x l) t) = concat (reverse (concat l t)) (cons x nil) : refl _
|
||||
... = concat (concat (reverse t) (reverse l)) (cons x nil) : { H }
|
||||
... = concat (reverse t) (concat (reverse l) (cons x nil)) : concat_assoc _ _ _
|
||||
... = concat (reverse t) (reverse (cons x l)) : refl _)
|
||||
|
||||
|
||||
-- -- add_rewrite length_nil length_cons
|
||||
theorem reverse_reverse (l : list T) : reverse (reverse l) = l :=
|
||||
list_induction_on l (refl _)
|
||||
(take x l',
|
||||
assume H: reverse (reverse l') = l',
|
||||
show reverse (reverse (cons x l')) = cons x l', from
|
||||
calc
|
||||
reverse (reverse (cons x l')) =
|
||||
concat (reverse (cons x nil)) (reverse (reverse l')) : {reverse_concat _ _}
|
||||
... = cons x l' : {H})
|
||||
-- Append
|
||||
-- ------
|
||||
|
||||
-- TODO: define reverse from append
|
||||
|
||||
definition append (x : T) : list T → list T := list_rec (x :: nil) (fun y l l', y :: l')
|
||||
|
||||
theorem append_nil (x : T) : append x nil = [x] := refl _
|
||||
|
||||
theorem append_cons (x : T) (y : T) (l : list T) : append x (y :: l) = y :: (append x l) := refl _
|
||||
|
||||
theorem append_eq_concat (x : T) (l : list T) : append x l = l ++ [x] :=
|
||||
list_induction_on l (refl _)
|
||||
(take y l,
|
||||
assume P : append x l = concat l [x],
|
||||
P ▸ refl _)
|
||||
|
||||
set_option unifier.expensive false
|
||||
theorem append_eq_reverse_cons (x : T) (l : list T) : append x l = reverse (x :: reverse l) :=
|
||||
list_induction_on l
|
||||
(calc
|
||||
append x nil = [x] : (refl _)
|
||||
... = concat nil [x] : {symm (nil_concat _)}
|
||||
... = concat (reverse nil) [x] : {symm (reverse_nil)}
|
||||
... = reverse [x] : {symm (reverse_cons _ _)}
|
||||
... = reverse (x :: (reverse nil)) : {symm (reverse_nil)})
|
||||
(take y l',
|
||||
assume H : append x l' = reverse (x :: reverse l'),
|
||||
calc
|
||||
append x (y :: l') = (y :: l') ++ [ x ] : append_eq_concat _ _
|
||||
... = concat (reverse (reverse (y :: l'))) [ x ] : {symm (reverse_reverse _)}
|
||||
... = reverse (x :: (reverse (y :: l'))) : refl _)
|
||||
|
||||
exit
|
||||
-- Head and tail
|
||||
-- -------------
|
||||
|
||||
definition head (x0 : T) : list T → T := list_rec x0 (fun x l h, x)
|
||||
|
||||
theorem head_nil (x0 : T) : head x0 (@nil T) = x0 := refl _
|
||||
|
||||
theorem head_cons (x : T) (x0 : T) (t : list T) : head x0 (x :: t) = x := refl _
|
||||
|
||||
theorem head_concat (s t : list T) (x0 : T) : s ≠ nil → (head x0 (s ++ t) = head x0 s) :=
|
||||
list_cases_on s
|
||||
(take H : nil ≠ nil, absurd_elim (head x0 (concat nil t) = head x0 nil) (refl nil) H)
|
||||
(take x s,
|
||||
take H : cons x s ≠ nil,
|
||||
calc
|
||||
head x0 (concat (cons x s) t) = head x0 (cons x (concat s t)) : {cons_concat _ _ _}
|
||||
... = x : {head_cons _ _ _}
|
||||
... = head x0 (cons x s) : {symm ( head_cons x x0 s)})
|
||||
|
||||
definition tail : list T → list T := list_rec nil (fun x l b, l)
|
||||
|
||||
theorem tail_nil : tail (@nil T) = nil := refl _
|
||||
|
||||
theorem tail_cons (x : T) (l : list T) : tail (cons x l) = l := refl _
|
||||
|
||||
theorem cons_head_tail (x0 : T) (l : list T) : l ≠ nil → (head x0 l) :: (tail l) = l :=
|
||||
list_cases_on l
|
||||
(assume H : nil ≠ nil, absurd_elim _ (refl _) H)
|
||||
(take x l, assume H : cons x l ≠ nil, refl _)
|
||||
|
||||
|
||||
-- List membership
|
||||
-- ---------------
|
||||
|
||||
definition mem (x : T) : list T → Prop := list_rec false (fun y l H, x = y ∨ H)
|
||||
|
||||
infix `∈` : 50 := mem
|
||||
|
||||
theorem mem_nil (x : T) : mem x nil ↔ false := iff_refl _
|
||||
|
||||
theorem mem_cons (x : T) (y : T) (l : list T) : mem x (cons y l) ↔ (x = y ∨ mem x l) := iff_refl _
|
Loading…
Reference in a new issue