feat(library/data/prod/wf): define relational product and prove wf theorem for it

This commit is contained in:
Leonardo de Moura 2014-11-16 17:46:05 -08:00
parent bf5f48730c
commit de209f929e

View file

@ -10,9 +10,14 @@ namespace prod
variable (Ra : A → A → Prop) variable (Ra : A → A → Prop)
variable (Rb : B → B → Prop) variable (Rb : B → B → Prop)
-- Lexicographical order based on Ra and Rb
inductive lex : A × B → A × B → Prop := inductive lex : A × B → A × B → Prop :=
left : ∀a₁ b₁ a₂ b₂, Ra a₁ a₂ → lex (a₁, b₁) (a₂, b₂), left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex (a₁, b₁) (a₂, b₂),
right : ∀a b₁ b₂, Rb b₁ b₂ → lex (a, b₁) (a, b₂) right : ∀a {b₁ b₂}, Rb b₁ b₂ → lex (a, b₁) (a, b₂)
-- Relational product based on Ra and Rb
inductive rprod : A × B → A × B → Prop :=
intro : ∀{a₁ b₁ a₂ b₂}, Ra a₁ a₂ → Rb b₁ b₂ → rprod (a₁, b₁) (a₂, b₂)
end end
context context
@ -20,7 +25,7 @@ namespace prod
parameters {Ra : A → A → Prop} {Rb : B → B → Prop} parameters {Ra : A → A → Prop} {Rb : B → B → Prop}
infix `≺`:50 := lex Ra Rb infix `≺`:50 := lex Ra Rb
definition accessible {a} (aca : acc Ra a) (acb : ∀b, acc Rb b): ∀b, acc (lex Ra Rb) (a, b) := definition lex.accessible {a} (aca : acc Ra a) (acb : ∀b, acc Rb b): ∀b, acc (lex Ra Rb) (a, b) :=
acc.rec_on aca acc.rec_on aca
(λxa aca (iHa : ∀y, Ra y xa → ∀b, acc (lex Ra Rb) (y, b)), (λxa aca (iHa : ∀y, Ra y xa → ∀b, acc (lex Ra Rb) (y, b)),
λb, acc.rec_on (acb b) λb, acc.rec_on (acb b)
@ -42,8 +47,23 @@ namespace prod
aux rfl rfl))) aux rfl rfl)))
-- The lexicographical order of well founded relations is well-founded -- The lexicographical order of well founded relations is well-founded
definition wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (lex Ra Rb) := definition lex.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (lex Ra Rb) :=
well_founded.intro (λp, destruct p (λa b, accessible (Ha a) (well_founded.apply Hb) b)) well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) (well_founded.apply Hb) b))
end
context
parameters {A B : Type}
parameters {Ra : A → A → Prop} {Rb : B → B → Prop}
infix `≺`:50 := rprod Ra Rb
-- Relational product is a subrelation of the lex
definition rprod.sub_lex : ∀ a b, rprod Ra Rb a b → lex Ra Rb a b :=
λa b H, rprod.rec_on H (λ a₁ b₁ a₂ b₂ H₁ H₂, lex.left Rb a₂ b₂ H₁)
-- The relational product of well founded relations is well-founded
definition rprod.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (rprod Ra Rb) :=
subrel.wf (rprod.sub_lex) (lex.wf Ha Hb)
end end
end prod end prod