refactor(library/data/{int,rat}/*): clean up casts between nat, int, and rat

This commit is contained in:
Jeremy Avigad 2015-09-12 10:00:34 -04:00
parent 20f6b4c6bd
commit de83a68667
10 changed files with 97 additions and 66 deletions

View file

@ -87,7 +87,10 @@ infix [priority int.prio] * := int.mul
theorem of_nat.inj {m n : } (H : of_nat m = of_nat n) : m = n := theorem of_nat.inj {m n : } (H : of_nat m = of_nat n) : m = n :=
int.no_confusion H imp.id int.no_confusion H imp.id
theorem of_nat_eq_of_nat (m n : ) : of_nat m = of_nat n ↔ m = n := theorem eq_of_of_nat_eq_of_nat {m n : } (H : of_nat m = of_nat n) : m = n :=
of_nat.inj H
theorem of_nat_eq_of_nat_iff (m n : ) : of_nat m = of_nat n ↔ m = n :=
iff.intro of_nat.inj !congr_arg iff.intro of_nat.inj !congr_arg
theorem neg_succ_of_nat.inj {m n : } (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n := theorem neg_succ_of_nat.inj {m n : } (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n :=
@ -97,7 +100,7 @@ theorem neg_succ_of_nat_eq (n : ) : -[1+ n] = -(n + 1) := rfl
private definition has_decidable_eq₂ : Π (a b : ), decidable (a = b) private definition has_decidable_eq₂ : Π (a b : ), decidable (a = b)
| (of_nat m) (of_nat n) := decidable_of_decidable_of_iff | (of_nat m) (of_nat n) := decidable_of_decidable_of_iff
(nat.has_decidable_eq m n) (iff.symm (of_nat_eq_of_nat m n)) (nat.has_decidable_eq m n) (iff.symm (of_nat_eq_of_nat_iff m n))
| (of_nat m) -[1+ n] := inr (by contradiction) | (of_nat m) -[1+ n] := inr (by contradiction)
| -[1+ m] (of_nat n) := inr (by contradiction) | -[1+ m] (of_nat n) := inr (by contradiction)
| -[1+ m] -[1+ n] := if H : m = n then | -[1+ m] -[1+ n] := if H : m = n then

View file

@ -288,7 +288,7 @@ obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1,
obtain n (Hn : b = of_nat n), from exists_eq_of_nat (le_of_lt (lt_of_le_of_lt H1 H2)), obtain n (Hn : b = of_nat n), from exists_eq_of_nat (le_of_lt (lt_of_le_of_lt H1 H2)),
begin begin
revert H2, revert H2,
rewrite [Hm, Hn, of_nat_mod, of_nat_lt_of_nat, of_nat_eq_of_nat], rewrite [Hm, Hn, of_nat_mod, of_nat_lt_of_nat_iff, of_nat_eq_of_nat_iff],
apply nat.mod_eq_of_lt apply nat.mod_eq_of_lt
end end
@ -481,21 +481,21 @@ nat.by_cases_zero_pos n
assume H4 : of_nat n' = of_nat m * c, assume H4 : of_nat n' = of_nat m * c,
have H5 : c > 0, from pos_of_mul_pos_left (H4 ▸ H2) !of_nat_nonneg, have H5 : c > 0, from pos_of_mul_pos_left (H4 ▸ H2) !of_nat_nonneg,
obtain k (H6 : c = of_nat k), from exists_eq_of_nat (le_of_lt H5), obtain k (H6 : c = of_nat k), from exists_eq_of_nat (le_of_lt H5),
have H7 : n' = (#nat m * k), from (!iff.mp !of_nat_eq_of_nat (H6 ▸ H4)), have H7 : n' = (#nat m * k), from (of_nat.inj (H6 ▸ H4)),
nat.dvd.intro H7⁻¹)) nat.dvd.intro H7⁻¹))
theorem of_nat_dvd_of_nat_of_dvd {m n : } (H : #nat m n) : of_nat m of_nat n := theorem of_nat_dvd_of_nat_of_dvd {m n : } (H : #nat m n) : of_nat m of_nat n :=
nat.dvd.elim H nat.dvd.elim H
(take k, assume H1 : #nat n = m * k, (take k, assume H1 : #nat n = m * k,
dvd.intro (!iff.mpr !of_nat_eq_of_nat H1⁻¹)) dvd.intro (H1⁻¹ ▸ rfl))
theorem of_nat_dvd_of_nat (m n : ) : of_nat m of_nat n ↔ (#nat m n) := theorem of_nat_dvd_of_nat_iff (m n : ) : of_nat m of_nat n ↔ (#nat m n) :=
iff.intro dvd_of_of_nat_dvd_of_nat of_nat_dvd_of_nat_of_dvd iff.intro dvd_of_of_nat_dvd_of_nat of_nat_dvd_of_nat_of_dvd
theorem dvd.antisymm {a b : } (H1 : a ≥ 0) (H2 : b ≥ 0) : a b → b a → a = b := theorem dvd.antisymm {a b : } (H1 : a ≥ 0) (H2 : b ≥ 0) : a b → b a → a = b :=
begin begin
rewrite [-abs_of_nonneg H1, -abs_of_nonneg H2, -*of_nat_nat_abs], rewrite [-abs_of_nonneg H1, -abs_of_nonneg H2, -*of_nat_nat_abs],
rewrite [*of_nat_dvd_of_nat, *of_nat_eq_of_nat], rewrite [*of_nat_dvd_of_nat_iff, *of_nat_eq_of_nat_iff],
apply nat.dvd.antisymm apply nat.dvd.antisymm
end end

View file

@ -63,7 +63,7 @@ by rewrite [↑gcd, nat.gcd_self, of_nat_nat_abs]
theorem gcd_dvd_left (a b : ) : gcd a b a := theorem gcd_dvd_left (a b : ) : gcd a b a :=
have gcd a b abs a, have gcd a b abs a,
by rewrite [↑gcd, -of_nat_nat_abs, of_nat_dvd_of_nat]; apply nat.gcd_dvd_left, by rewrite [↑gcd, -of_nat_nat_abs, of_nat_dvd_of_nat_iff]; apply nat.gcd_dvd_left,
iff.mp !dvd_abs_iff this iff.mp !dvd_abs_iff this
theorem gcd_dvd_right (a b : ) : gcd a b b := theorem gcd_dvd_right (a b : ) : gcd a b b :=
@ -72,7 +72,7 @@ by rewrite gcd.comm; apply gcd_dvd_left
theorem dvd_gcd {a b c : } : a b → a c → a gcd b c := theorem dvd_gcd {a b c : } : a b → a c → a gcd b c :=
begin begin
rewrite [↑gcd, -*(abs_dvd_iff a), -(dvd_abs_iff _ b), -(dvd_abs_iff _ c), -*of_nat_nat_abs], rewrite [↑gcd, -*(abs_dvd_iff a), -(dvd_abs_iff _ b), -(dvd_abs_iff _ c), -*of_nat_nat_abs],
rewrite [*of_nat_dvd_of_nat] , rewrite [*of_nat_dvd_of_nat_iff] ,
apply nat.dvd_gcd apply nat.dvd_gcd
end end
@ -212,21 +212,21 @@ theorem lcm_self (a : ) : lcm a a = abs a :=
by krewrite [↑lcm, nat.lcm_self, of_nat_nat_abs] by krewrite [↑lcm, nat.lcm_self, of_nat_nat_abs]
theorem dvd_lcm_left (a b : ) : a lcm a b := theorem dvd_lcm_left (a b : ) : a lcm a b :=
by rewrite [↑lcm, -abs_dvd_iff, -of_nat_nat_abs, of_nat_dvd_of_nat]; apply nat.dvd_lcm_left by rewrite [↑lcm, -abs_dvd_iff, -of_nat_nat_abs, of_nat_dvd_of_nat_iff]; apply nat.dvd_lcm_left
theorem dvd_lcm_right (a b : ) : b lcm a b := theorem dvd_lcm_right (a b : ) : b lcm a b :=
!lcm.comm ▸ !dvd_lcm_left !lcm.comm ▸ !dvd_lcm_left
theorem gcd_mul_lcm (a b : ) : gcd a b * lcm a b = abs (a * b) := theorem gcd_mul_lcm (a b : ) : gcd a b * lcm a b = abs (a * b) :=
begin begin
rewrite [↑gcd, ↑lcm, -of_nat_nat_abs, -of_nat_mul, of_nat_eq_of_nat, nat_abs_mul], rewrite [↑gcd, ↑lcm, -of_nat_nat_abs, -of_nat_mul, of_nat_eq_of_nat_iff, nat_abs_mul],
apply nat.gcd_mul_lcm apply nat.gcd_mul_lcm
end end
theorem lcm_dvd {a b c : } : a c → b c → lcm a b c := theorem lcm_dvd {a b c : } : a c → b c → lcm a b c :=
begin begin
rewrite [↑lcm, -(abs_dvd_iff a), -(abs_dvd_iff b), -*(dvd_abs_iff _ c), -*of_nat_nat_abs], rewrite [↑lcm, -(abs_dvd_iff a), -(abs_dvd_iff b), -*(dvd_abs_iff _ c), -*of_nat_nat_abs],
rewrite [*of_nat_dvd_of_nat] , rewrite [*of_nat_dvd_of_nat_iff] ,
apply nat.lcm_dvd apply nat.lcm_dvd
end end
@ -261,7 +261,7 @@ dvd_of_coprime_of_dvd_mul_right H1 (!mul.comm ▸ H2)
theorem gcd_mul_left_cancel_of_coprime {c : } (a : ) {b : } (H : coprime c b) : theorem gcd_mul_left_cancel_of_coprime {c : } (a : ) {b : } (H : coprime c b) :
gcd (c * a) b = gcd a b := gcd (c * a) b = gcd a b :=
begin begin
revert H, rewrite [↑coprime, ↑gcd, *of_nat_eq_of_nat, nat_abs_mul], revert H, rewrite [↑coprime, ↑gcd, *of_nat_eq_of_nat_iff, nat_abs_mul],
apply nat.gcd_mul_left_cancel_of_coprime apply nat.gcd_mul_left_cancel_of_coprime
end end

View file

@ -45,7 +45,7 @@ theorem le.total (a b : ) : a ≤ b b ≤ a :=
or.imp_right or.imp_right
(assume H : nonneg (-(b - a)), (assume H : nonneg (-(b - a)),
have -(b - a) = a - b, from !neg_sub, have -(b - a) = a - b, from !neg_sub,
show nonneg (a - b), from this ▸ H) -- too bad: can't do it in one step show nonneg (a - b), from this ▸ H)
(nonneg_or_nonneg_neg (b - a)) (nonneg_or_nonneg_neg (b - a))
theorem of_nat_le_of_nat_of_le {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n := theorem of_nat_le_of_nat_of_le {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
@ -57,7 +57,7 @@ obtain (k : ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
have m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk), have m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk),
nat.le.intro this nat.le.intro this
theorem of_nat_le_of_nat (m n : ) : of_nat m ≤ of_nat n ↔ m ≤ n := theorem of_nat_le_of_nat_iff (m n : ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le
theorem lt_add_succ (a : ) (n : ) : a < a + succ n := theorem lt_add_succ (a : ) (n : ) : a < a + succ n :=
@ -78,18 +78,18 @@ have a + succ n = b, from
... = b : Hn, ... = b : Hn,
exists.intro n this exists.intro n this
theorem of_nat_lt_of_nat (n m : ) : of_nat n < of_nat m ↔ n < m := theorem of_nat_lt_of_nat_iff (n m : ) : of_nat n < of_nat m ↔ n < m :=
calc calc
of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl
... ↔ of_nat (nat.succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl ... ↔ of_nat (nat.succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl
... ↔ nat.succ n ≤ m : of_nat_le_of_nat ... ↔ nat.succ n ≤ m : of_nat_le_of_nat_iff
... ↔ n < m : iff.symm (lt_iff_succ_le _ _) ... ↔ n < m : iff.symm (lt_iff_succ_le _ _)
theorem lt_of_of_nat_lt_of_nat {m n : } (H : of_nat m < of_nat n) : #nat m < n := theorem lt_of_of_nat_lt_of_nat {m n : } (H : of_nat m < of_nat n) : #nat m < n :=
iff.mp !of_nat_lt_of_nat H iff.mp !of_nat_lt_of_nat_iff H
theorem of_nat_lt_of_nat_of_lt {m n : } (H : #nat m < n) : of_nat m < of_nat n := theorem of_nat_lt_of_nat_of_lt {m n : } (H : #nat m < n) : of_nat m < of_nat n :=
iff.mpr !of_nat_lt_of_nat H iff.mpr !of_nat_lt_of_nat_iff H
/- show that the integers form an ordered additive group -/ /- show that the integers form an ordered additive group -/
@ -388,7 +388,6 @@ dvd.elim H'
(take b, (take b,
suppose 1 = a * b, suppose 1 = a * b,
eq_one_of_mul_eq_one_right H this⁻¹) eq_one_of_mul_eq_one_right H this⁻¹)
--
theorem ex_smallest_of_bdd {P : → Prop} [HP : decidable_pred P] (Hbdd : ∃ b : , ∀ z : , z ≤ b → ¬ P z) theorem ex_smallest_of_bdd {P : → Prop} [HP : decidable_pred P] (Hbdd : ∃ b : , ∀ z : , z ≤ b → ¬ P z)
(Hinh : ∃ z : , P z) : ∃ lb : , P lb ∧ (∀ z : , z < lb → ¬ P z) := (Hinh : ∃ z : , P z) : ∃ lb : , P lb ∧ (∀ z : , z < lb → ¬ P z) :=
@ -418,7 +417,7 @@ theorem ex_smallest_of_bdd {P : → Prop} [HP : decidable_pred P] (Hbdd :
have Hk : nat_abs (z - b) < least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b))), begin have Hk : nat_abs (z - b) < least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b))), begin
let Hz' := iff.mp !int.lt_add_iff_sub_lt_left Hz, let Hz' := iff.mp !int.lt_add_iff_sub_lt_left Hz,
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'], rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
apply iff.mp !int.of_nat_lt_of_nat Hz' apply lt_of_of_nat_lt_of_nat Hz'
end, end,
let Hk' := nat.not_le_of_gt Hk, let Hk' := nat.not_le_of_gt Hk,
rewrite Hzbk, rewrite Hzbk,
@ -455,7 +454,7 @@ theorem ex_largest_of_bdd {P : → Prop} [HP : decidable_pred P] (Hbdd : ∃
have Hk : nat_abs (b - z) < least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt))), begin have Hk : nat_abs (b - z) < least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt))), begin
let Hz' := iff.mp !int.lt_add_iff_sub_lt_left (iff.mpr !int.lt_add_iff_sub_lt_right Hz), let Hz' := iff.mp !int.lt_add_iff_sub_lt_left (iff.mpr !int.lt_add_iff_sub_lt_right Hz),
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'], rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
apply iff.mp !int.of_nat_lt_of_nat Hz' apply lt_of_of_nat_lt_of_nat Hz'
end, end,
let Hk' := nat.not_le_of_gt Hk, let Hk' := nat.not_le_of_gt Hk,
rewrite Hzbk, rewrite Hzbk,

View file

@ -88,16 +88,16 @@ theorem pnat.to_rat_of_nat (n : +) : rat_of_pnat n = of_nat n~ := rfl
theorem rat_of_nat_nonneg (n : ) : 0 ≤ of_nat n := trivial theorem rat_of_nat_nonneg (n : ) : 0 ≤ of_nat n := trivial
theorem rat_of_pnat_ge_one (n : +) : rat_of_pnat n ≥ 1 := theorem rat_of_pnat_ge_one (n : +) : rat_of_pnat n ≥ 1 :=
(iff.mpr !of_nat_le_of_nat) (pnat_pos n) of_nat_le_of_nat_of_le (pnat_pos n)
theorem rat_of_pnat_is_pos (n : +) : rat_of_pnat n > 0 := theorem rat_of_pnat_is_pos (n : +) : rat_of_pnat n > 0 :=
(iff.mpr !of_nat_pos) (pnat_pos n) of_nat_lt_of_nat_of_lt (pnat_pos n)
theorem of_nat_le_of_nat_of_le {m n : } (H : m ≤ n) : of_nat m ≤ of_nat n := theorem of_nat_le_of_nat_of_le {m n : } (H : m ≤ n) : of_nat m ≤ of_nat n :=
(iff.mpr !of_nat_le_of_nat) H of_nat_le_of_nat_of_le H
theorem of_nat_lt_of_nat_of_lt {m n : } (H : m < n) : of_nat m < of_nat n := theorem of_nat_lt_of_nat_of_lt {m n : } (H : m < n) : of_nat m < of_nat n :=
(iff.mpr !of_nat_lt_of_nat) H of_nat_lt_of_nat_of_lt H
theorem rat_of_pnat_le_of_pnat_le {m n : +} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n := theorem rat_of_pnat_le_of_pnat_le {m n : +} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n :=
of_nat_le_of_nat_of_le H of_nat_le_of_nat_of_le H
@ -106,7 +106,7 @@ theorem rat_of_pnat_lt_of_pnat_lt {m n : +} (H : m < n) : rat_of_pnat m < rat
of_nat_lt_of_nat_of_lt H of_nat_lt_of_nat_of_lt H
theorem pnat_le_of_rat_of_pnat_le {m n : +} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n := theorem pnat_le_of_rat_of_pnat_le {m n : +} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n :=
(iff.mp !of_nat_le_of_nat) H le_of_of_nat_le_of_nat H
definition inv (n : +) : := (1 : ) / rat_of_pnat n definition inv (n : +) : := (1 : ) / rat_of_pnat n
postfix `⁻¹` := inv postfix `⁻¹` := inv

View file

@ -349,8 +349,8 @@ namespace rat
/- operations -/ /- operations -/
definition of_int [coercion] (i : ) : := ⟦prerat.of_int i⟧ definition of_int [coercion] (i : ) : := ⟦prerat.of_int i⟧
definition of_nat [coercion] (n : ) : := ⟦prerat.of_int n⟧ definition of_nat [coercion] (n : ) : := nat.to.rat n
definition of_num [coercion] [reducible] (n : num) : := of_int (int.of_num n) definition of_num [coercion] [reducible] (n : num) : := num.to.rat n
definition add : := definition add : :=
quot.lift₂ quot.lift₂
@ -413,16 +413,28 @@ calc
theorem of_int.inj {a b : } (H : of_int a = of_int b) : a = b := theorem of_int.inj {a b : } (H : of_int a = of_int b) : a = b :=
prerat.of_int.inj (quot.exact H) prerat.of_int.inj (quot.exact H)
theorem eq_of_of_int_eq_of_int {a b : } (H : of_int a = of_int b) : a = b :=
of_int.inj H
theorem of_nat_eq (a : ) : of_nat a = of_int (int.of_nat a) := rfl theorem of_nat_eq (a : ) : of_nat a = of_int (int.of_nat a) := rfl
theorem of_nat_add (a b : ) : of_nat (#nat a + b) = of_nat a + of_nat b := theorem of_nat_add (a b : ) : of_nat (#nat a + b) = of_nat a + of_nat b :=
by rewrite [*of_nat_eq, int.of_nat_add, rat.of_int_add] by rewrite [of_nat_eq, int.of_nat_add, rat.of_int_add]
theorem of_nat_mul (a b : ) : of_nat (#nat a * b) = of_nat a * of_nat b := theorem of_nat_mul (a b : ) : of_nat (#nat a * b) = of_nat a * of_nat b :=
by rewrite [*of_nat_eq, int.of_nat_mul, rat.of_int_mul] by rewrite [of_nat_eq, int.of_nat_mul, rat.of_int_mul]
theorem of_nat_sub {a b : } (H : #nat a ≥ b) : of_nat (#nat a - b) = of_nat a - of_nat b := theorem of_nat_sub {a b : } (H : #nat a ≥ b) : of_nat (#nat a - b) = of_nat a - of_nat b :=
by rewrite [*of_nat_eq, int.of_nat_sub H, rat.of_int_sub] by rewrite [of_nat_eq, int.of_nat_sub H, rat.of_int_sub]
theorem of_nat.inj {a b : } (H : of_nat a = of_nat b) : a = b :=
int.of_nat.inj (of_int.inj H)
theorem eq_of_of_nat_eq_of_nat {a b : } (H : of_nat a = of_nat b) : a = b :=
of_nat.inj H
theorem of_nat_eq_of_nat_iff (a b : ) : of_nat a = of_nat b ↔ a = b :=
iff.intro of_nat.inj !congr_arg
theorem add.comm (a b : ) : a + b = b + a := theorem add.comm (a b : ) : a + b = b + a :=
quot.induction_on₂ a b (take u v, quot.sound !prerat.add.comm) quot.induction_on₂ a b (take u v, quot.sound !prerat.add.comm)

View file

@ -152,35 +152,52 @@ infix [priority rat.prio] >= := rat.ge
infix [priority rat.prio] ≥ := rat.ge infix [priority rat.prio] ≥ := rat.ge
infix [priority rat.prio] > := rat.gt infix [priority rat.prio] > := rat.gt
theorem of_int_lt_of_int (a b : ) : of_int a < of_int b ↔ (#int a < b) := theorem of_int_lt_of_int_iff (a b : ) : of_int a < of_int b ↔ (#int a < b) :=
iff.symm (calc iff.symm (calc
(#int a < b) ↔ (#int b - a > 0) : iff.symm !int.sub_pos_iff_lt (#int a < b) ↔ (#int b - a > 0) : iff.symm !int.sub_pos_iff_lt
... ↔ pos (of_int (#int b - a)) : iff.symm !pos_of_int ... ↔ pos (of_int (#int b - a)) : iff.symm !pos_of_int
... ↔ pos (of_int b - of_int a) : !of_int_sub ▸ iff.rfl ... ↔ pos (of_int b - of_int a) : !of_int_sub ▸ iff.rfl
... ↔ of_int a < of_int b : iff.rfl) ... ↔ of_int a < of_int b : iff.rfl)
theorem of_int_le_of_int (a b : ) : of_int a ≤ of_int b ↔ (#int a ≤ b) := theorem of_int_lt_of_int_of_lt {a b : } (H : (#int a < b)) : of_int a < of_int b :=
iff.mpr !of_int_lt_of_int_iff H
theorem lt_of_of_int_lt_of_int {a b : } (H : of_int a < of_int b) : (#int a < b) :=
iff.mp !of_int_lt_of_int_iff H
theorem of_int_le_of_int_iff (a b : ) : of_int a ≤ of_int b ↔ (#int a ≤ b) :=
iff.symm (calc iff.symm (calc
(#int a ≤ b) ↔ (#int b - a ≥ 0) : iff.symm !int.sub_nonneg_iff_le (#int a ≤ b) ↔ (#int b - a ≥ 0) : iff.symm !int.sub_nonneg_iff_le
... ↔ nonneg (of_int (#int b - a)) : iff.symm !nonneg_of_int ... ↔ nonneg (of_int (#int b - a)) : iff.symm !nonneg_of_int
... ↔ nonneg (of_int b - of_int a) : !of_int_sub ▸ iff.rfl ... ↔ nonneg (of_int b - of_int a) : !of_int_sub ▸ iff.rfl
... ↔ of_int a ≤ of_int b : iff.rfl) ... ↔ of_int a ≤ of_int b : iff.rfl)
theorem of_int_pos (a : ) : (of_int a > 0) ↔ (#int a > 0) := !of_int_lt_of_int theorem of_int_le_of_int_of_le {a b : } (H : (#int a ≤ b)) : of_int a ≤ of_int b :=
iff.mpr !of_int_le_of_int_iff H
theorem of_int_nonneg (a : ) : (of_int a ≥ 0) ↔ (#int a ≥ 0) := !of_int_le_of_int theorem le_of_of_int_le_of_int {a b : } (H : of_int a ≤ of_int b) : (#int a ≤ b) :=
iff.mp !of_int_le_of_int_iff H
theorem of_nat_lt_of_nat (a b : ) : of_nat a < of_nat b ↔ (#nat a < b) := theorem of_nat_lt_of_nat_iff (a b : ) : of_nat a < of_nat b ↔ (#nat a < b) :=
by rewrite [*of_nat_eq, propext !of_int_lt_of_int]; apply int.of_nat_lt_of_nat by rewrite [*of_nat_eq, of_int_lt_of_int_iff, int.of_nat_lt_of_nat_iff]
theorem of_nat_le_of_nat (a b : ) : of_nat a ≤ of_nat b ↔ (#nat a ≤ b) := theorem of_nat_lt_of_nat_of_lt {a b : } (H : (#nat a < b)) : of_nat a < of_nat b :=
by rewrite [*of_nat_eq, propext !of_int_le_of_int]; apply int.of_nat_le_of_nat iff.mpr !of_nat_lt_of_nat_iff H
theorem of_nat_pos (a : ) : (of_nat a > 0) ↔ (#nat a > nat.zero) := theorem lt_of_of_nat_lt_of_nat {a b : } (H : of_nat a < of_nat b) : (#nat a < b) :=
!of_nat_lt_of_nat iff.mp !of_nat_lt_of_nat_iff H
theorem of_nat_le_of_nat_iff (a b : ) : of_nat a ≤ of_nat b ↔ (#nat a ≤ b) :=
by rewrite [*of_nat_eq, of_int_le_of_int_iff, int.of_nat_le_of_nat_iff]
theorem of_nat_le_of_nat_of_le {a b : } (H : (#nat a ≤ b)) : of_nat a ≤ of_nat b :=
iff.mpr !of_nat_le_of_nat_iff H
theorem le_of_of_nat_le_of_nat {a b : } (H : of_nat a ≤ of_nat b) : (#nat a ≤ b) :=
iff.mp !of_nat_le_of_nat_iff H
theorem of_nat_nonneg (a : ) : (of_nat a ≥ 0) := theorem of_nat_nonneg (a : ) : (of_nat a ≥ 0) :=
iff.mpr !of_nat_le_of_nat !nat.zero_le of_nat_le_of_nat_of_le !nat.zero_le
theorem le.refl (a : ) : a ≤ a := theorem le.refl (a : ) : a ≤ a :=
by rewrite [↑rat.le, sub_self]; apply nonneg_zero by rewrite [↑rat.le, sub_self]; apply nonneg_zero
@ -328,8 +345,8 @@ end migrate_algebra
theorem rat_of_nat_abs (a : ) : abs (of_int a) = of_nat (int.nat_abs a) := theorem rat_of_nat_abs (a : ) : abs (of_int a) = of_nat (int.nat_abs a) :=
assert ∀ n : , of_int (int.neg_succ_of_nat n) = - of_nat (nat.succ n), from λ n, rfl, assert ∀ n : , of_int (int.neg_succ_of_nat n) = - of_nat (nat.succ n), from λ n, rfl,
int.induction_on a int.induction_on a
(take b, abs_of_nonneg (!of_nat_nonneg)) (take b, abs_of_nonneg !of_nat_nonneg)
(take b, by rewrite [this, abs_neg, abs_of_nonneg (!of_nat_nonneg)]) (take b, by rewrite [this, abs_neg, abs_of_nonneg !of_nat_nonneg])
section section
open int open int
@ -341,40 +358,40 @@ section
begin begin
rewrite [-mul_denom], rewrite [-mul_denom],
apply mul_nonneg H, apply mul_nonneg H,
rewrite [of_int_le_of_int], rewrite [of_int_le_of_int_iff],
exact int.le_of_lt !denom_pos exact int.le_of_lt !denom_pos
end, end,
show num q ≥ 0, from iff.mp !of_int_le_of_int this show num q ≥ 0, from le_of_of_int_le_of_int this
theorem num_pos_of_pos {q : } (H : q > 0) : num q > 0 := theorem num_pos_of_pos {q : } (H : q > 0) : num q > 0 :=
have of_int (num q) > of_int 0, have of_int (num q) > of_int 0,
begin begin
rewrite [-mul_denom], rewrite [-mul_denom],
apply mul_pos H, apply mul_pos H,
rewrite [of_int_lt_of_int], rewrite [of_int_lt_of_int_iff],
exact !denom_pos exact !denom_pos
end, end,
show num q > 0, from iff.mp !of_int_lt_of_int this show num q > 0, from lt_of_of_int_lt_of_int this
theorem num_neg_of_neg {q : } (H : q < 0) : num q < 0 := theorem num_neg_of_neg {q : } (H : q < 0) : num q < 0 :=
have of_int (num q) < of_int 0, have of_int (num q) < of_int 0,
begin begin
rewrite [-mul_denom], rewrite [-mul_denom],
apply mul_neg_of_neg_of_pos H, apply mul_neg_of_neg_of_pos H,
rewrite [of_int_lt_of_int], rewrite [of_int_lt_of_int_iff],
exact !denom_pos exact !denom_pos
end, end,
show num q < 0, from iff.mp !of_int_lt_of_int this show num q < 0, from lt_of_of_int_lt_of_int this
theorem num_nonpos_of_nonpos {q : } (H : q ≤ 0) : num q ≤ 0 := theorem num_nonpos_of_nonpos {q : } (H : q ≤ 0) : num q ≤ 0 :=
have of_int (num q) ≤ of_int 0, have of_int (num q) ≤ of_int 0,
begin begin
rewrite [-mul_denom], rewrite [-mul_denom],
apply mul_nonpos_of_nonpos_of_nonneg H, apply mul_nonpos_of_nonpos_of_nonneg H,
rewrite [of_int_le_of_int], rewrite [of_int_le_of_int_iff],
exact int.le_of_lt !denom_pos exact int.le_of_lt !denom_pos
end, end,
show num q ≤ 0, from iff.mp !of_int_le_of_int this show num q ≤ 0, from le_of_of_int_le_of_int this
end end
definition ubound : := λ a : , nat.succ (int.nat_abs (num a)) definition ubound : := λ a : , nat.succ (int.nat_abs (num a))
@ -382,10 +399,10 @@ definition ubound : := λ a : , nat.succ (int.nat_abs (num a))
theorem ubound_ge (a : ) : of_nat (ubound a) ≥ a := theorem ubound_ge (a : ) : of_nat (ubound a) ≥ a :=
have h : abs a * abs (of_int (denom a)) = abs (of_int (num a)), from have h : abs a * abs (of_int (denom a)) = abs (of_int (num a)), from
!abs_mul ▸ !mul_denom ▸ rfl, !abs_mul ▸ !mul_denom ▸ rfl,
assert of_int (denom a) > 0, from (iff.mpr !of_int_pos) !denom_pos, assert of_int (denom a) > 0, from of_int_lt_of_int_of_lt !denom_pos,
have 1 ≤ abs (of_int (denom a)), begin have 1 ≤ abs (of_int (denom a)), begin
rewrite (abs_of_pos this), rewrite (abs_of_pos this),
apply iff.mpr !of_int_le_of_int, apply of_int_le_of_int_of_le,
apply denom_pos apply denom_pos
end, end,
have abs a ≤ abs (of_int (num a)), from have abs a ≤ abs (of_int (num a)), from

View file

@ -1061,11 +1061,11 @@ theorem one_mul (x : ) : 1 * x = x :=
theorem mul_one (x : ) : x * 1 = x := theorem mul_one (x : ) : x * 1 = x :=
quot.induction_on x (λ s, quot.sound (r_mul_one s)) quot.induction_on x (λ s, quot.sound (r_mul_one s))
theorem distrib (x y z : ) : x * (y + z) = x * y + x * z := theorem left_distrib (x y z : ) : x * (y + z) = x * y + x * z :=
quot.induction_on₃ x y z (λ s t u, quot.sound (r_distrib s t u)) quot.induction_on₃ x y z (λ s t u, quot.sound (r_distrib s t u))
theorem distrib_l (x y z : ) : (x + y) * z = x * z + y * z := theorem right_distrib (x y z : ) : (x + y) * z = x * z + y * z :=
by rewrite [mul_comm, distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary by rewrite [mul_comm, left_distrib, {x * _}mul_comm, {y * _}mul_comm] -- this shouldn't be necessary
theorem zero_ne_one : ¬ (0 : ) = 1 := theorem zero_ne_one : ¬ (0 : ) = 1 :=
take H : 0 = 1, take H : 0 = 1,
@ -1087,8 +1087,8 @@ protected definition comm_ring [reducible] : algebra.comm_ring :=
apply of_num 1, apply of_num 1,
apply one_mul, apply one_mul,
apply mul_one, apply mul_one,
apply distrib, apply left_distrib,
apply distrib_l, apply right_distrib,
apply mul_comm apply mul_comm
end end

View file

@ -399,7 +399,7 @@ theorem archimedean_upper_strict (x : ) : ∃ z : , x < of_rat (of_int z)
apply lt_of_le_of_lt, apply lt_of_le_of_lt,
apply Hz, apply Hz,
apply of_rat_lt_of_rat_of_lt, apply of_rat_lt_of_rat_of_lt,
apply iff.mpr !of_int_lt_of_int, apply of_int_lt_of_int_of_lt,
apply int.lt_add_of_pos_right, apply int.lt_add_of_pos_right,
apply dec_trivial apply dec_trivial
end end
@ -431,7 +431,7 @@ definition ex_floor (x : ) :=
apply Har, apply Har,
have H : of_rat (of_int (some (archimedean_upper_strict x))) ≤ of_rat (of_int z), begin have H : of_rat (of_int (some (archimedean_upper_strict x))) ≤ of_rat (of_int z), begin
apply of_rat_le_of_rat_of_le, apply of_rat_le_of_rat_of_le,
apply iff.mpr !of_int_le_of_int, apply of_int_le_of_int_of_le,
apply Hz apply Hz
end, end,
exact H exact H
@ -553,7 +553,7 @@ noncomputable definition under : := of_int (floor (elt - 1))
theorem under_spec1 : of_rat under < elt := theorem under_spec1 : of_rat under < elt :=
have H : of_rat under < of_rat (of_int (floor elt)), begin have H : of_rat under < of_rat (of_int (floor elt)), begin
apply of_rat_lt_of_rat_of_lt, apply of_rat_lt_of_rat_of_lt,
apply iff.mpr !of_int_lt_of_int, apply of_int_lt_of_int_of_lt,
apply floor_succ_lt apply floor_succ_lt
end, end,
lt_of_lt_of_le H !floor_spec lt_of_lt_of_le H !floor_spec
@ -574,7 +574,7 @@ noncomputable definition over : := of_int (ceil (bound + 1)) -- b
theorem over_spec1 : bound < of_rat over := theorem over_spec1 : bound < of_rat over :=
have H : of_rat (of_int (ceil bound)) < of_rat over, begin have H : of_rat (of_int (ceil bound)) < of_rat over, begin
apply of_rat_lt_of_rat_of_lt, apply of_rat_lt_of_rat_of_lt,
apply iff.mpr !of_int_lt_of_int, apply of_int_lt_of_int_of_lt,
apply ceil_succ apply ceil_succ
end, end,
lt_of_le_of_lt !ceil_spec H lt_of_le_of_lt !ceil_spec H

View file

@ -24,7 +24,7 @@ section
have even b, from even_of_even_pow this, have even b, from even_of_even_pow this,
have 2 gcd a b, from dvd_gcd (dvd_of_even `even a`) (dvd_of_even `even b`), have 2 gcd a b, from dvd_gcd (dvd_of_even `even a`) (dvd_of_even `even b`),
have 2 1, from co ▸ this, have 2 1, from co ▸ this,
absurd `2 1` dec_trivial show false, from absurd `2 1` dec_trivial
end end
/- /-
@ -81,7 +81,7 @@ section
using this, by rewrite [-int.abs_pow, this, int.abs_mul, int.abs_pow], using this, by rewrite [-int.abs_pow, this, int.abs_mul, int.abs_pow],
have H₁ : (nat_abs a)^n = nat_abs c * (nat_abs b)^n, have H₁ : (nat_abs a)^n = nat_abs c * (nat_abs b)^n,
using this, using this,
by apply of_nat.inj; rewrite [int.of_nat_mul, +of_nat_pow, +of_nat_nat_abs]; assumption, by apply int.of_nat.inj; rewrite [int.of_nat_mul, +of_nat_pow, +of_nat_nat_abs]; assumption,
have H₂ : nat.coprime (nat_abs a) (nat_abs b), from of_nat.inj !coprime_num_denom, have H₂ : nat.coprime (nat_abs a) (nat_abs b), from of_nat.inj !coprime_num_denom,
have nat_abs b = 1, from have nat_abs b = 1, from
by_cases by_cases