refactor(hott): adjust HoTT library to new support for projections
This commit is contained in:
parent
c61e6f6595
commit
de90926eed
8 changed files with 56 additions and 35 deletions
|
@ -124,7 +124,7 @@ namespace category
|
|||
esimp [eq_of_iso_ob, inv_of_eq, hom_of_eq, eq_of_iso],
|
||||
rewrite [*right_inv iso_of_eq],
|
||||
esimp [function.id],
|
||||
symmetry, apply naturality_iso
|
||||
symmetry, apply @naturality_iso _ _ _ _ _ (iso.struct _)
|
||||
}
|
||||
end
|
||||
|
||||
|
|
|
@ -33,10 +33,11 @@ namespace category
|
|||
(eq_of_homotopy (right_inv (to_fun f)))
|
||||
|
||||
definition equiv_of_iso {A B : Precategory_hset} (f : A ≅ B) : A ≃ B :=
|
||||
equiv.MK (to_hom f)
|
||||
(iso.to_inv f)
|
||||
(ap10 (right_inverse (to_hom f)))
|
||||
(ap10 (left_inverse (to_hom f)))
|
||||
begin
|
||||
apply equiv.MK (to_hom f) (iso.to_inv f),
|
||||
exact ap10 (right_inverse (to_hom f)),
|
||||
exact ap10 (left_inverse (to_hom f))
|
||||
end
|
||||
|
||||
definition is_equiv_iso_of_equiv (A B : Precategory_hset) : is_equiv (@iso_of_equiv A B) :=
|
||||
adjointify _ (λf, equiv_of_iso f)
|
||||
|
@ -61,12 +62,12 @@ namespace category
|
|||
|
||||
definition equiv_equiv_iso (A B : Precategory_hset) : (A ≃ B) ≃ (A ≅ B) :=
|
||||
equiv.MK (λf, iso_of_equiv f)
|
||||
(λf, equiv.MK (to_hom f)
|
||||
(λf, proof equiv.MK (to_hom f)
|
||||
(iso.to_inv f)
|
||||
(ap10 (right_inverse (to_hom f)))
|
||||
(ap10 (left_inverse (to_hom f))))
|
||||
(λf, iso_eq idp)
|
||||
(λf, equiv_eq idp)
|
||||
(ap10 (left_inverse (to_hom f))) qed)
|
||||
(λf, proof iso_eq idp qed)
|
||||
(λf, proof equiv_eq idp qed)
|
||||
|
||||
definition equiv_eq_iso (A B : Precategory_hset) : (A ≃ B) = (A ≅ B) :=
|
||||
ua !equiv_equiv_iso
|
||||
|
|
|
@ -29,7 +29,8 @@ namespace category
|
|||
|
||||
variables {C : Precategory} {a b c : C}
|
||||
|
||||
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
|
||||
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f :=
|
||||
by reflexivity
|
||||
|
||||
definition opposite_opposite' {ob : Type} (C : precategory ob) : opposite (opposite C) = C :=
|
||||
by cases C; apply idp
|
||||
|
|
|
@ -100,18 +100,18 @@ namespace nat_trans
|
|||
|
||||
definition nf_fn_eq_fn_nf (η : F ⟹ G) (θ : F' ⟹ G')
|
||||
: (θ ∘nf G) ∘n (F' ∘fn η) = (G' ∘fn η) ∘n (θ ∘nf F) :=
|
||||
nat_trans_eq (λc, !nf_fn_eq_fn_nf_pt)
|
||||
nat_trans_eq (λ c, nf_fn_eq_fn_nf_pt η θ c)
|
||||
|
||||
definition fn_n_distrib (F' : D ⇒ E) (η : G ⟹ H) (θ : F ⟹ G)
|
||||
: F' ∘fn (η ∘n θ) = (F' ∘fn η) ∘n (F' ∘fn θ) :=
|
||||
nat_trans_eq (λc, !respect_comp)
|
||||
nat_trans_eq (λc, by apply respect_comp)
|
||||
|
||||
definition n_nf_distrib (η : G ⟹ H) (θ : F ⟹ G) (F' : B ⇒ C)
|
||||
: (η ∘n θ) ∘nf F' = (η ∘nf F') ∘n (θ ∘nf F') :=
|
||||
nat_trans_eq (λc, idp)
|
||||
|
||||
definition fn_id (F' : D ⇒ E) : F' ∘fn nat_trans.ID F = nat_trans.id :=
|
||||
nat_trans_eq (λc, !respect_id)
|
||||
nat_trans_eq (λc, by apply respect_id)
|
||||
|
||||
definition id_nf (F' : B ⇒ C) : nat_trans.ID F ∘nf F' = nat_trans.id :=
|
||||
nat_trans_eq (λc, idp)
|
||||
|
|
|
@ -22,18 +22,15 @@ namespace yoneda
|
|||
... = _ : by rewrite (assoc f2 f3 f4)
|
||||
|
||||
definition hom_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set :=
|
||||
functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2)
|
||||
(λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1))
|
||||
begin
|
||||
intro x, apply eq_of_homotopy, intro h, exact (!id_left ⬝ !id_right)
|
||||
end
|
||||
begin
|
||||
intro x y z g f, apply eq_of_homotopy, intro h,
|
||||
exact (representable_functor_assoc g.2 f.2 h f.1 g.1),
|
||||
end
|
||||
functor.mk
|
||||
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
|
||||
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y) (h : @homset (Cᵒᵖ) C x.1 x.2),
|
||||
f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1))
|
||||
(λ x, @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2)) (λ h, concat (by apply @id_left) (by apply @id_right)))
|
||||
(λ x y z g f,
|
||||
eq_of_homotopy (by intros; apply @representable_functor_assoc))
|
||||
end yoneda
|
||||
|
||||
|
||||
open is_equiv equiv
|
||||
|
||||
namespace functor
|
||||
|
@ -51,15 +48,18 @@ namespace functor
|
|||
local abbreviation Fob := @functor_curry_ob
|
||||
|
||||
definition functor_curry_hom ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' :=
|
||||
nat_trans.mk (λd, F (f, id))
|
||||
(λd d' g, calc
|
||||
begin
|
||||
fapply @nat_trans.mk,
|
||||
{intro d, exact F (f, id)},
|
||||
{intro d d' g, calc
|
||||
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
|
||||
... = F (f, g ∘ id) : by rewrite id_left
|
||||
... = F (f, g) : by rewrite id_right
|
||||
... = F (f ∘ id, g) : by rewrite id_right
|
||||
... = F (f ∘ id, id ∘ g) : by rewrite id_left
|
||||
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ)
|
||||
|
||||
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ
|
||||
}
|
||||
end
|
||||
local abbreviation Fhom := @functor_curry_hom
|
||||
|
||||
theorem functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
|
||||
|
@ -70,12 +70,15 @@ namespace functor
|
|||
|
||||
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
|
||||
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
|
||||
nat_trans_eq (λd, calc
|
||||
begin
|
||||
apply @nat_trans_eq,
|
||||
intro d, calc
|
||||
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : by rewrite functor_curry_hom_def
|
||||
... = F (f' ∘ f, id ∘ id) : by rewrite id_comp
|
||||
... = F ((f',id) ∘ (f, id)) : by esimp
|
||||
... = F (f',id) ∘ F (f, id) : by rewrite [respect_comp F]
|
||||
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp)
|
||||
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp
|
||||
end
|
||||
|
||||
definition functor_curry [reducible] : C ⇒ E ^c D :=
|
||||
functor.mk (functor_curry_ob F)
|
||||
|
|
|
@ -28,8 +28,16 @@ refl : eq a a
|
|||
structure lift.{l₁ l₂} (A : Type.{l₁}) : Type.{max l₁ l₂} :=
|
||||
up :: (down : A)
|
||||
|
||||
structure prod (A B : Type) :=
|
||||
mk :: (pr1 : A) (pr2 : B)
|
||||
inductive prod (A B : Type) :=
|
||||
mk : A → B → prod A B
|
||||
|
||||
definition prod.pr1 [reducible] [unfold-c 3] {A B : Type} (p : prod A B) : A :=
|
||||
prod.rec (λ a b, a) p
|
||||
|
||||
definition prod.pr2 [reducible] [unfold-c 3] {A B : Type} (p : prod A B) : B :=
|
||||
prod.rec (λ a b, b) p
|
||||
|
||||
definition prod.destruct [reducible] := @prod.cases_on
|
||||
|
||||
inductive sum (A B : Type) : Type :=
|
||||
| inl {} : A → sum A B
|
||||
|
@ -41,8 +49,14 @@ sum.inl a
|
|||
definition sum.intro_right [reducible] (A : Type) {B : Type} (b : B) : sum A B :=
|
||||
sum.inr b
|
||||
|
||||
structure sigma {A : Type} (B : A → Type) :=
|
||||
mk :: (pr1 : A) (pr2 : B pr1)
|
||||
inductive sigma {A : Type} (B : A → Type) :=
|
||||
mk : Π (a : A), B a → sigma B
|
||||
|
||||
definition sigma.pr1 [reducible] [unfold-c 3] {A : Type} {B : A → Type} (p : sigma B) : A :=
|
||||
sigma.rec (λ a b, a) p
|
||||
|
||||
definition sigma.pr2 [reducible] [unfold-c 3] {A : Type} {B : A → Type} (p : sigma B) : B (sigma.pr1 p) :=
|
||||
sigma.rec (λ a b, b) p
|
||||
|
||||
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
||||
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
||||
|
|
|
@ -103,7 +103,7 @@ namespace is_trunc
|
|||
contr_internal.center (is_trunc.to_internal -2 A)
|
||||
|
||||
definition center_eq [H : is_contr A] (a : A) : !center = a :=
|
||||
contr_internal.center_eq !is_trunc.to_internal a
|
||||
contr_internal.center_eq (is_trunc.to_internal -2 A) a
|
||||
|
||||
definition eq_of_is_contr [H : is_contr A] (x y : A) : x = y :=
|
||||
(center_eq x)⁻¹ ⬝ (center_eq y)
|
||||
|
|
|
@ -17,6 +17,8 @@ namespace sigma
|
|||
{D : Πa b, C a b → Type}
|
||||
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
|
||||
|
||||
definition destruct := @sigma.cases_on
|
||||
|
||||
protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u
|
||||
| eta ⟨u₁, u₂⟩ := idp
|
||||
|
||||
|
|
Loading…
Reference in a new issue