Improve pretty printer for Pi's
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
1cee392483
commit
df116f88e0
13 changed files with 115 additions and 32 deletions
|
@ -686,14 +686,17 @@ class pp_fn {
|
|||
}
|
||||
}
|
||||
|
||||
result pp_scoped_child(expr const & e, unsigned depth) {
|
||||
result pp_scoped_child(expr const & e, unsigned depth, unsigned prec = 0) {
|
||||
if (is_atomic(e)) {
|
||||
return pp(e, depth + 1, true);
|
||||
} else {
|
||||
mk_scope s(*this);
|
||||
result r = pp(e, depth + 1, true);
|
||||
if (m_aliases_defs.size() == s.m_old_size) {
|
||||
if (prec <= get_operator_precedence(e))
|
||||
return r;
|
||||
else
|
||||
return mk_result(paren(r.first), r.second);
|
||||
} else {
|
||||
format r_format = g_let_fmt;
|
||||
unsigned r_weight = 2;
|
||||
|
@ -715,12 +718,12 @@ class pp_fn {
|
|||
}
|
||||
}
|
||||
|
||||
result pp_arrow_body(expr const & e, unsigned depth) {
|
||||
if (is_atomic(e) || is_arrow(e)) {
|
||||
return pp(e, depth + 1);
|
||||
} else {
|
||||
return pp_child_with_paren(e, depth);
|
||||
result pp_arrow_child(expr const & e, unsigned depth) {
|
||||
return pp_scoped_child(e, depth, g_arrow_precedence + 1);
|
||||
}
|
||||
|
||||
result pp_arrow_body(expr const & e, unsigned depth) {
|
||||
return pp_scoped_child(e, depth, g_arrow_precedence);
|
||||
}
|
||||
|
||||
template<typename It>
|
||||
|
@ -738,6 +741,44 @@ class pp_fn {
|
|||
return implicit_args && (*implicit_args)[arg_pos];
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Auxiliary method for computing where Pi can be pretty printed as an arrow.
|
||||
Examples:
|
||||
Pi x : Int, Pi y : Int, Int ===> return 0
|
||||
Pi A : Type, Pi x : A, Pi y : A, A ===> return 1
|
||||
Pi A : Type, Pi x : Int, A ===> return 1
|
||||
Pi A : Type, Pi x : Int, x > 0 ===> return UINT_MAX (there is no tail that can be printed as a arrow)
|
||||
|
||||
If \c e is not Pi, it returns UINT_MAX
|
||||
*/
|
||||
unsigned get_arrow_starting_at(expr e) {
|
||||
if (!is_pi(e))
|
||||
return std::numeric_limits<unsigned>::max();
|
||||
unsigned pos = 0;
|
||||
while (is_pi(e)) {
|
||||
expr e2 = abst_body(e);
|
||||
unsigned num_vars = 1;
|
||||
bool ok = true;
|
||||
while (true) {
|
||||
if (has_free_var(e2, 0, num_vars)) {
|
||||
ok = false;
|
||||
break;
|
||||
}
|
||||
if (is_pi(e2)) {
|
||||
e2 = abst_body(e2);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (ok) {
|
||||
return pos;
|
||||
}
|
||||
e = abst_body(e);
|
||||
pos++;
|
||||
}
|
||||
return std::numeric_limits<unsigned>::max();
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Pretty print Lambdas, Pis and compact definitions.
|
||||
When T != 0, it is a compact definition.
|
||||
|
@ -759,11 +800,12 @@ class pp_fn {
|
|||
local_names::mk_scope mk(m_local_names);
|
||||
if (is_arrow(e) && !implicit_args) {
|
||||
lean_assert(!T);
|
||||
result p_lhs = pp_child(abst_domain(e), depth);
|
||||
result p_lhs = pp_arrow_child(abst_domain(e), depth);
|
||||
result p_rhs = pp_arrow_body(abst_body(e), depth);
|
||||
format r_format = group(format{p_lhs.first, space(), m_unicode ? g_arrow_n_fmt : g_arrow_fmt, line(), p_rhs.first});
|
||||
return mk_result(r_format, p_lhs.second + p_rhs.second + 1);
|
||||
} else {
|
||||
unsigned arrow_starting_at = get_arrow_starting_at(e);
|
||||
buffer<std::pair<name, expr>> nested;
|
||||
auto p = collect_nested(e, T, e.kind(), nested);
|
||||
expr b = p.first;
|
||||
|
@ -814,6 +856,37 @@ class pp_fn {
|
|||
++it2;
|
||||
bool implicit = is_implicit(implicit_args, arg_pos);
|
||||
++arg_pos;
|
||||
if (!implicit && !is_lambda(e) && arg_pos > arrow_starting_at) {
|
||||
// the rest is an arrow, but we must check if we are not missing implicit annotations.
|
||||
auto it2_aux = it2;
|
||||
unsigned arg_pos_aux = arg_pos;
|
||||
while (it2_aux != end && !is_implicit(implicit_args, arg_pos_aux)) {
|
||||
++arg_pos_aux;
|
||||
++it2_aux;
|
||||
}
|
||||
if (it2_aux == end) {
|
||||
// the rest is a sequence of arrows.
|
||||
format block;
|
||||
bool first_domain = true;
|
||||
for (; it != end; ++it) {
|
||||
result p_domain = pp_arrow_child(it->second, depth);
|
||||
r_weight += p_domain.second;
|
||||
if (first_domain) {
|
||||
first_domain = false;
|
||||
block = p_domain.first;
|
||||
} else {
|
||||
block += format{space(), m_unicode ? g_arrow_n_fmt : g_arrow_fmt, line(), p_domain.first};
|
||||
}
|
||||
}
|
||||
result p_body = pp_arrow_child(b, depth);
|
||||
r_weight += p_body.second;
|
||||
block += format{space(), m_unicode ? g_arrow_n_fmt : g_arrow_fmt, line(), p_body.first};
|
||||
block = group(block);
|
||||
format r_format = group(nest(head_indent, format{head, space(), group(bindings), body_sep, line(), block}));
|
||||
return mk_result(r_format, r_weight);
|
||||
}
|
||||
}
|
||||
// Continue with standard encoding
|
||||
while (it2 != end && it2->second == it->second && implicit == is_implicit(implicit_args, arg_pos)) {
|
||||
++it2;
|
||||
++arg_pos;
|
||||
|
|
4
tests/lean/arrow.lean
Normal file
4
tests/lean/arrow.lean
Normal file
|
@ -0,0 +1,4 @@
|
|||
Show (Int -> Int) -> Int
|
||||
Show Int -> Int -> Int
|
||||
Show Int -> (Int -> Int)
|
||||
Show (Int -> Int) -> (Int -> Int) -> Int
|
6
tests/lean/arrow.lean.expected.out
Normal file
6
tests/lean/arrow.lean.expected.out
Normal file
|
@ -0,0 +1,6 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
(ℤ → ℤ) → ℤ
|
||||
ℤ → ℤ → ℤ
|
||||
ℤ → ℤ → ℤ
|
||||
(ℤ → ℤ) → (ℤ → ℤ) → ℤ
|
|
@ -9,7 +9,7 @@
|
|||
Error (line: 12, pos: 6) type mismatch at application
|
||||
f m v1
|
||||
Function type:
|
||||
Π (n : ℕ) (v : vector ℤ n), ℤ
|
||||
Π (n : ℕ), (vector ℤ n) → ℤ
|
||||
Arguments types:
|
||||
m : ℕ
|
||||
v1 : vector ℤ (m + 0)
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
Error (line: 4, pos: 6) type mismatch at application
|
||||
f 10 ⊤
|
||||
Function type:
|
||||
Π (A : Type) (a b : A), A
|
||||
Π (A : Type), A → A → A
|
||||
Arguments types:
|
||||
ℕ : Type
|
||||
10 : ℕ
|
||||
|
@ -16,7 +16,7 @@ Error (line: 7, pos: 6) unsolved placeholder at term
|
|||
Error (line: 11, pos: 27) application type mismatch during term elaboration
|
||||
h A x
|
||||
Function type:
|
||||
Π (A : Type) (_ : A), A
|
||||
Π (A : Type), A → A
|
||||
Arguments types:
|
||||
A : Type
|
||||
x : lift:0:2 ?M0
|
||||
|
@ -26,7 +26,7 @@ Elaborator state
|
|||
Error (line: 15, pos: 51) application type mismatch during term elaboration
|
||||
eq C a b
|
||||
Function type:
|
||||
Π (A : Type) (_ _ : A), Bool
|
||||
Π (A : Type), A → A → Bool
|
||||
Arguments types:
|
||||
C : Type
|
||||
a : lift:0:3 ?M0
|
||||
|
@ -52,7 +52,7 @@ Elaborator state
|
|||
Error (line: 22, pos: 22) type mismatch at application
|
||||
Trans (Refl a) (Refl b)
|
||||
Function type:
|
||||
Π (A : Type U) (a b c : A) (H1 : a = b) (H2 : b = c), a = c
|
||||
Π (A : Type U) (a b c : A), (a = b) → (b = c) → (a = c)
|
||||
Arguments types:
|
||||
Bool : Type
|
||||
a : Bool
|
||||
|
@ -63,7 +63,7 @@ Arguments types:
|
|||
Error (line: 24, pos: 6) type mismatch at application
|
||||
f Bool Bool
|
||||
Function type:
|
||||
Π (A : Type) (a b : A), A
|
||||
Π (A : Type), A → A → A
|
||||
Arguments types:
|
||||
Type : Type 1
|
||||
Bool : Type
|
||||
|
@ -71,7 +71,7 @@ Arguments types:
|
|||
Error (line: 27, pos: 21) type mismatch at application
|
||||
DisjCases (EM a) (λ H_a : a, H) (λ H_na : ¬ a, NotImp1 (MT H H_na))
|
||||
Function type:
|
||||
Π (a b c : Bool) (H1 : a ∨ b) (H2 : a → c) (H3 : b → c), c
|
||||
Π (a b c : Bool), (a ∨ b) → (a → c) → (b → c) → c
|
||||
Arguments types:
|
||||
a : Bool
|
||||
¬ a : Bool
|
||||
|
|
|
@ -5,9 +5,9 @@
|
|||
Assumed: R
|
||||
Proved: R2
|
||||
Set: lean::pp::implicit
|
||||
Variable C {A B : Type} (H : A = B) (a : A) : B
|
||||
Variable C {A B : Type} : (A = B) → A → B
|
||||
Definition C::explicit (A B : Type) (H : A = B) (a : A) : B := C H a
|
||||
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : (Π x : A, B x) = (Π x : A', B' x)) : A = A'
|
||||
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} : ((Π x : A, B x) = (Π x : A', B' x)) → (A = A')
|
||||
Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (Π x : A, B x) = (Π x : A', B' x)) : A =
|
||||
A' :=
|
||||
D H
|
||||
|
|
|
@ -7,7 +7,7 @@ myeq Bool ⊤ ⊥
|
|||
Error (line: 5, pos: 6) type mismatch at application
|
||||
myeq Bool ⊤ a
|
||||
Function type:
|
||||
Π (A : Type) (_ _ : A), Bool
|
||||
Π (A : Type), A → A → Bool
|
||||
Arguments types:
|
||||
Bool : Type
|
||||
⊤ : Bool
|
||||
|
@ -17,7 +17,7 @@ Arguments types:
|
|||
Error (line: 9, pos: 15) type mismatch at application
|
||||
myeq2::explicit Bool ⊤ a
|
||||
Function type:
|
||||
Π (A : Type) (a b : A), Bool
|
||||
Π (A : Type), A → A → Bool
|
||||
Arguments types:
|
||||
Bool : Type
|
||||
⊤ : Bool
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
Defined: select
|
||||
Defined: map
|
||||
Axiom two_lt_three : two < three
|
||||
Definition vector (A : Type) (n : N) : Type := Π (i : N) (H : i < n), A
|
||||
Definition vector (A : Type) (n : N) : Type := Π (i : N), (i < n) → A
|
||||
Definition const {A : Type} (n : N) (d : A) : vector A n := λ (i : N) (H : i < n), d
|
||||
Definition const::explicit (A : Type) (n : N) (d : A) : vector A n := const n d
|
||||
Definition update {A : Type} {n : N} (v : vector A n) (i : N) (d : A) : vector A n :=
|
||||
|
@ -30,20 +30,20 @@ Bool
|
|||
vector Bool three
|
||||
|
||||
--------
|
||||
Π (A : Type) (n : N) (v : vector A n) (i : N) (H : i < n), A
|
||||
Π (A : Type) (n : N) (v : vector A n) (i : N), (i < n) → A
|
||||
|
||||
map type --->
|
||||
Π (A B C : Type) (n : N) (f : A → B → C) (v1 : vector A n) (v2 : vector B n), vector C n
|
||||
Π (A B C : Type) (n : N), (A → B → C) → (vector A n) → (vector B n) → (vector C n)
|
||||
|
||||
map normal form -->
|
||||
λ (A B C : Type)
|
||||
(n : N)
|
||||
(f : A → B → C)
|
||||
(v1 : Π (i : N) (H : i < n), A)
|
||||
(v2 : Π (i : N) (H : i < n), B)
|
||||
(v1 : Π (i : N), (i < n) → A)
|
||||
(v2 : Π (i : N), (i < n) → B)
|
||||
(i : N)
|
||||
(H : i < n),
|
||||
f (v1 i H) (v2 i H)
|
||||
|
||||
update normal form -->
|
||||
λ (A : Type) (n : N) (v : Π (i : N) (H : i < n), A) (i : N) (d : A) (j : N) (H : j < n), if A (j = i) d (v j H)
|
||||
λ (A : Type) (n : N) (v : Π (i : N), (i < n) → A) (i : N) (d : A) (j : N) (H : j < n), if A (j = i) d (v j H)
|
||||
|
|
|
@ -19,6 +19,6 @@ if Bool a a ⊤
|
|||
a
|
||||
Assumed: H1
|
||||
Assumed: H2
|
||||
Π (a b : Bool) (H1 : a ⇒ b) (H2 : a), b
|
||||
Π (a b : Bool), (a ⇒ b) → a → b
|
||||
MP H2 H1
|
||||
b
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
⊤
|
||||
Assumed: a
|
||||
a ⊕ a ⊕ a
|
||||
Π (A : Type U) (a b : A) (P : A → Bool) (H1 : P a) (H2 : a = b), P b
|
||||
Π (A : Type U) (a b : A) (P : A → Bool), (P a) → (a = b) → (P b)
|
||||
Proved: EM2
|
||||
Π a : Bool, a ∨ ¬ a
|
||||
a ∨ ¬ a
|
||||
|
|
|
@ -10,7 +10,7 @@ f::explicit ((N → N) → N → N) (λ x : N → N, x) (λ y : N → N, y)
|
|||
Assumed: EqNice
|
||||
EqNice::explicit N n1 n2
|
||||
N
|
||||
Π (A : Type U) (B : A → Type U) (f g : Π x : A, B x) (a b : A) (H1 : f = g) (H2 : a = b), (f a) = (g b)
|
||||
Π (A : Type U) (B : A → Type U) (f g : Π x : A, B x) (a b : A), (f = g) → (a = b) → ((f a) = (g b))
|
||||
f::explicit N n1 n2
|
||||
Assumed: a
|
||||
Assumed: b
|
||||
|
|
|
@ -5,15 +5,15 @@
|
|||
Error (line: 4, pos: 40) application type mismatch during term elaboration
|
||||
f B a
|
||||
Function type:
|
||||
Π (A : Type) (_ : A), Bool
|
||||
Π (A : Type), A → Bool
|
||||
Arguments types:
|
||||
B : Type
|
||||
a : lift:0:2 ?M0
|
||||
Elaborator state
|
||||
#0 ≈ lift:0:2 ?M0
|
||||
Assumed: myeq
|
||||
myeq (Π (A : Type) (a : A), A) (λ (A : Type) (a : A), a) (λ (B : Type) (b : B), b)
|
||||
myeq (Π (A : Type), A → A) (λ (A : Type) (a : A), a) (λ (B : Type) (b : B), b)
|
||||
Bool
|
||||
Assumed: R
|
||||
Assumed: h
|
||||
Bool → (Π (f1 g1 : Π A : Type, R A) (G : Π A : Type, myeq (R A) (f1 A) (g1 A)), Bool)
|
||||
Bool → (Π (f1 g1 : Π A : Type, R A), (Π A : Type, myeq (R A) (f1 A) (g1 A)) → Bool)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
Set: pp::colors
|
||||
Set: pp::unicode
|
||||
Π (A : Type) (a : A), A
|
||||
Π (A : Type), A → A
|
||||
Assumed: g
|
||||
Defined: f
|
||||
f ℕ 10
|
||||
|
|
Loading…
Reference in a new issue