feat(types/eq2): add theorem about eq_of_con_inv_eq_idp

This commit is contained in:
Floris van Doorn 2015-06-25 22:25:08 -04:00
parent c8eee66c5b
commit df3ce2b00b
3 changed files with 14 additions and 1 deletions

View file

@ -631,7 +631,8 @@ namespace eq
⬝ (!whisker_left_idp_left ◾ !whisker_right_idp_right) ⬝ (!whisker_left_idp_left ◾ !whisker_right_idp_right)
-- The action of functions on 2-dimensional paths -- The action of functions on 2-dimensional paths
definition ap02 [unfold-c 8] (f : A → B) {x y : A} {p q : x = y} (r : p = q) : ap f p = ap f q := definition ap02 [unfold-c 8] [reducible] (f : A → B) {x y : A} {p q : x = y} (r : p = q)
: ap f p = ap f q :=
ap (ap f) r ap (ap f) r
definition ap02_con (f : A → B) {x y : A} {p p' p'' : x = y} (r : p = p') (r' : p' = p'') : definition ap02_con (f : A → B) {x y : A} {p p' p'' : x = y} (r : p = p') (r' : p' = p'') :

View file

@ -359,4 +359,10 @@ namespace eq
: square (t₁ ◾ t₂) (b₁ ◾ b₂) (l₁ ◾ l₂) (r₁ ◾ r₂) := : square (t₁ ◾ t₂) (b₁ ◾ b₂) (l₁ ◾ l₂) (r₁ ◾ r₂) :=
by induction s₂;induction s₁;constructor by induction s₂;induction s₁;constructor
-- definition square_of_con_inv_hsquare {p₁ p₂ p₃ p₄ : a₁ = a₂}
-- {t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄}
-- (s : square (con_inv_eq_idp t) (con_inv_eq_idp b) (l ◾ r⁻²) idp)
-- : square t b l r :=
-- sorry --by induction s
end eq end eq

View file

@ -90,6 +90,12 @@ namespace eq
(ap_compose g f q) := (ap_compose g f q) :=
natural_square (ap_compose g f) r natural_square (ap_compose g f) r
theorem ap_eq_of_con_inv_eq_idp (f : A → B) {p q : a₁ = a₂} (r : p ⬝ q⁻¹ = idp)
: ap02 f (eq_of_con_inv_eq_idp r) =
eq_of_con_inv_eq_idp (whisker_left _ !ap_inv⁻¹ ⬝ !ap_con⁻¹ ⬝ ap02 f r)
:=
by induction q;esimp at *;cases r;reflexivity
-- definition naturality_apdo {A : Type} {B : A → Type} {a a₂ : A} {f g : Πa, B a} -- definition naturality_apdo {A : Type} {B : A → Type} {a a₂ : A} {f g : Πa, B a}
-- (H : f ~ g) (p : a = a₂) -- (H : f ~ g) (p : a = a₂)
-- : squareover B vrfl (apdo f p) (apdo g p) -- : squareover B vrfl (apdo f p) (apdo g p)