feat(category.opposite): prove that the opposite of a univalent category is univalent

This commit is contained in:
Floris van Doorn 2015-09-25 17:36:35 -04:00 committed by Leonardo de Moura
parent 099bd95ebd
commit df73931a6d
3 changed files with 55 additions and 6 deletions

View file

@ -8,7 +8,7 @@ Opposite precategory and (TODO) category
import ..functor ..category
open eq functor
open eq functor iso equiv is_equiv
namespace category
@ -50,4 +50,48 @@ namespace category
postfix `ᵒᵖ`:(max+2) := opposite_functor
definition opposite_iso [constructor] {ob : Type} [C : precategory ob] {a b : ob}
(H : @iso _ C a b) : @iso _ (opposite C) a b :=
begin
fapply @iso.MK,
{ exact to_inv H},
{ exact to_hom H},
{ exact to_left_inverse H},
{ exact to_right_inverse H},
end
definition iso_of_opposite_iso [constructor] {ob : Type} [C : precategory ob] {a b : ob}
(H : @iso _ (opposite C) a b) : @iso _ C a b :=
begin
fapply iso.MK,
{ exact to_inv H},
{ exact to_hom H},
{ exact to_left_inverse H},
{ exact to_right_inverse H},
end
definition opposite_iso_equiv [constructor] {ob : Type} [C : precategory ob] (a b : ob)
: @iso _ (opposite C) a b ≃ @iso _ C a b :=
begin
fapply equiv.MK,
{ exact iso_of_opposite_iso},
{ exact opposite_iso},
{ intro H, apply iso_eq, reflexivity},
{ intro H, apply iso_eq, reflexivity},
end
definition is_univalent_opposite (C : Category) : is_univalent (Opposite C) :=
begin
intro x y,
fapply is_equiv_of_equiv_of_homotopy,
{ refine @eq_equiv_iso C C x y ⬝e _, symmetry, apply opposite_iso_equiv},
{ intro p, induction p, reflexivity}
end
definition category_opposite [constructor] (C : Category) : category (Opposite C) :=
category.mk _ (is_univalent_opposite C)
definition Category_opposite [constructor] (C : Category) : Category :=
Category.mk _ (category_opposite C)
end category

View file

@ -145,12 +145,14 @@ namespace iso
(H1 : g ∘ f = id) (H2 : f ∘ g = id) :=
@(mk f) (is_iso.mk H1 H2)
variable {C}
definition to_inv [unfold 5] (f : a ≅ b) : b ⟶ a := (to_hom f)⁻¹
definition to_left_inverse [unfold 5] (f : a ≅ b) : (to_hom f)⁻¹ ∘ (to_hom f) = id :=
left_inverse (to_hom f)
definition to_right_inverse [unfold 5] (f : a ≅ b) : (to_hom f) ∘ (to_hom f)⁻¹ = id :=
right_inverse (to_hom f)
variable [C]
protected definition refl [constructor] (a : ob) : a ≅ a :=
mk (ID a)
@ -167,8 +169,10 @@ namespace iso
: iso.mk f = iso.mk f' :=
apd011 iso.mk p !is_hprop.elim
variable {C}
definition iso_eq {f f' : a ≅ b} (p : to_hom f = to_hom f') : f = f' :=
by (cases f; cases f'; apply (iso_mk_eq p))
variable [C]
-- The structure for isomorphism can be characterized up to equivalence by a sigma type.
protected definition sigma_char ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) :=

View file

@ -41,15 +41,16 @@ namespace category
structure has_terminal_object [class] (D : Precategory) :=
(d : D)
(is_term : is_terminal d)
(is_terminal : is_terminal d)
abbreviation terminal_object [constructor] := @has_terminal_object.d
attribute has_terminal_object.is_term [instance]
definition terminal_object [reducible] [unfold 2] := @has_terminal_object.d
attribute has_terminal_object.is_terminal [instance]
variable {D}
definition terminal_object_iso_terminal_object (H₁ H₂ : has_terminal_object D)
: @terminal_object D H₁ ≅ @terminal_object D H₂ :=
terminal_iso_terminal (@has_terminal_object.is_term D H₁) (@has_terminal_object.is_term D H₂)
terminal_iso_terminal (@has_terminal_object.is_terminal D H₁)
(@has_terminal_object.is_terminal D H₂)
theorem is_hprop_has_terminal_object [instance] (D : Category)
: is_hprop (has_terminal_object D) :=
@ -96,7 +97,7 @@ namespace category
definition limit_cone : cone F := !terminal_object
definition is_terminal_limit_cone [instance] : is_terminal (limit_cone F) :=
has_terminal_object.is_term _
has_terminal_object.is_terminal _
definition limit_object : D :=
cone_obj.c (limit_cone F)