refactor(library/standard): clean up logic, reorder arguments to elim rules

This commit is contained in:
Jeremy Avigad 2014-07-31 14:05:33 -07:00 committed by Leonardo de Moura
parent c89c96b913
commit df84c4c2ca
3 changed files with 97 additions and 54 deletions

View file

@ -18,31 +18,30 @@ abbreviation reflexive {T : Type} (R : T → T → Type) : Prop := ∀x, R x x
-- Congruence classes for unary and binary functions -- Congruence classes for unary and binary functions
-- ------------------------------------------------- -- -------------------------------------------------
-- TODO: call this 'class', so outside it is congruence.class inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
inductive struc {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) : Prop := (f : T1 → T2) : Prop :=
| mk : (∀x y : T1, R1 x y → R2 (f x) (f y)) → struc R1 R2 f | mk : (∀x y : T1, R1 x y → R2 (f x) (f y)) → class R1 R2 f
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{f : T1 → T2} (C : struc R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := {f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
struc_rec id C x y class_rec id C x y
-- to trigger class inference -- to trigger class inference
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) {C : struc R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := (f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
struc_rec id C x y class_rec id C x y
-- for binary functions -- for binary functions
inductive struc2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop := {T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
| mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) → | mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
struc2 R1 R2 R3 f class2 R1 R2 R3 f
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop}
{f : T1 → T2 → T3} (C : struc2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ {f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄
: R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) := : R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
struc2_rec id C x1 y1 x2 y2 class2_rec id C x1 y1 x2 y2
-- General tools to build instances -- General tools to build instances
@ -51,52 +50,40 @@ struc2_rec id C x1 y1 x2 y2
theorem compose theorem compose
{T2 : Type} {R2 : T2 → T2 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop}
{g : T2 → T3} (C2 : congr.struc R2 R3 g) {g : T2 → T3} (C2 : congr.class R2 R3 g)
{{T1 : Type}} {R1 : T1 → T1 → Prop} {{T1 : Type}} {R1 : T1 → T1 → Prop}
{f : T1 → T2} (C1 : congr.struc R1 R2 f) : {f : T1 → T2} (C1 : congr.class R1 R2 f) :
congr.struc R1 R3 (λx, g (f x)) := mk (take x1 x2 H, app C2 (app C1 H)) congr.class R1 R3 (λx, g (f x)) := mk (take x1 x2 H, app C2 (app C1 H))
theorem compose21 theorem compose21
{T2 : Type} {R2 : T2 → T2 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop}
{T4 : Type} {R4 : T4 → T4 → Prop} {T4 : Type} {R4 : T4 → T4 → Prop}
{g : T2 → T3 → T4} (C3 : congr.struc2 R2 R3 R4 g) {g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g)
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
{f1 : T1 → T2} (C1 : congr.struc R1 R2 f1) {f1 : T1 → T2} (C1 : congr.class R1 R2 f1)
{f2 : T1 → T3} (C2 : congr.struc R1 R3 f2) : {f2 : T1 → T3} (C2 : congr.class R1 R3 f2) :
congr.struc R1 R4 (λx, g (f1 x) (f2 x)) := mk (take x1 x2 H, app2 C3 (app C1 H) (app C2 H)) congr.class R1 R4 (λx, g (f1 x) (f2 x)) := mk (take x1 x2 H, app2 C3 (app C1 H) (app C2 H))
theorem trivial [instance] {T : Type} (R : T → T → Prop) : struc R R id := theorem trivial [instance] {T : Type} (R : T → T → Prop) : class R R id :=
mk (take x y H, H) mk (take x y H, H)
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) : theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) :
∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), struc R1 R2 (function.const T1 c) := ∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), class R1 R2 (function.const T1 c) :=
take T1 R1 c, mk (take x y H1, H c) take T1 R1 c, mk (take x y H1, H c)
-- instances for logic -- instances for logic
-- ------------------- -- -------------------
-- TODO: swap order for and_elim? theorem congr_not : congr.class iff iff not :=
abbreviation imp (a b : Prop) : Prop := a → b
theorem and_imp_and {a b c d : Prop} (H1 : a ∧ b) (H2 : a → c) (H3 : b → d) : c ∧ d :=
and_elim (assume Ha : a, assume Hb : b, and_intro (H2 Ha) (H3 Hb)) H1
theorem imp_and_left {a b c : Prop} (H1 : a ∧ c) (H : a → b) : b ∧ c :=
and_elim (assume Ha : a, assume Hc : c, and_intro (H Ha) Hc) H1
theorem imp_and_right {a b c : Prop} (H1 : c ∧ a) (H : a → b) : c ∧ b :=
and_elim (assume Hc : c, assume Ha : a, and_intro Hc (H Ha)) H1
theorem congr_not : congr.struc iff iff not :=
congr.mk congr.mk
(take a b, (take a b,
assume H : a ↔ b, iff_intro assume H : a ↔ b, iff_intro
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2)) (assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2))) (assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
theorem congr_and : congr.struc2 iff iff iff and := theorem congr_and : congr.class2 iff iff iff and :=
congr.mk2 congr.mk2
(take a1 b1 a2 b2, (take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
@ -104,7 +91,7 @@ congr.mk2
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2)) (assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2))) (assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_or : congr.struc2 iff iff iff or := theorem congr_or : congr.class2 iff iff iff or :=
congr.mk2 congr.mk2
(take a1 b1 a2 b2, (take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
@ -112,7 +99,7 @@ congr.mk2
(assume H3 : a1 a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2)) (assume H3 : a1 a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2))) (assume H3 : b1 b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_imp : congr.struc2 iff iff iff imp := theorem congr_imp : congr.class2 iff iff iff imp :=
congr.mk2 congr.mk2
(take a1 b1 a2 b2, (take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
@ -120,7 +107,7 @@ congr.mk2
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1))) (assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1)))) (assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
theorem congr_iff : congr.struc2 iff iff iff iff := theorem congr_iff : congr.class2 iff iff iff iff :=
congr.mk2 congr.mk2
(take a1 b1 a2 b2, (take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
@ -135,11 +122,21 @@ theorem congr_or_compose [instance] := congr.compose21 congr_or
theorem congr_implies_compose [instance] := congr.compose21 congr_imp theorem congr_implies_compose [instance] := congr.compose21 congr_imp
theorem congr_iff_compose [instance] := congr.compose21 congr_iff theorem congr_iff_compose [instance] := congr.compose21 congr_iff
theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {C : struc R iff P} theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {C : class R iff P}
{a b : T} (H : R a b) (H1 : P a) : P b := iff_mp_left (app C H) H1 {a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (app C H) H1
theorem test1 (a b c d e : Prop) (H1 : a ↔ b) : (a c → ¬(d → a)) ↔ (b c → ¬(d → b)) := theorem test1 (a b c d e : Prop) (H1 : a ↔ b) : (a c → ¬(d → a)) ↔ (b c → ¬(d → b)) :=
congr.infer iff iff _ H1 congr.infer iff iff _ H1
theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a c → ¬(d → a)) : b c → ¬(d → b) := theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a c → ¬(d → a)) : b c → ¬(d → b) :=
subst_iff H1 H2 subst_iff H1 H2
-- TODO: move these to new file
theorem or_right_comm (a b c : Prop) : (a b) c ↔ (a c) b :=
calc
(a b) c ↔ a (b c) : or_assoc _ _ _
... ↔ a (c b) : congr.infer iff iff _ (or_comm b c)
... ↔ (a c) b : iff_symm (or_assoc _ _ _)
-- TODO: add or_left_comm, and_right_comm, and_left_comm

View file

@ -58,9 +58,9 @@ theorem decidable_iff [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable
rec_on Ha rec_on Ha
(assume Ha, rec_on Hb (assume Ha, rec_on Hb
(assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha))) (assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha)))
(assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff_mp_left H Ha) Hnb))) (assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff_elim_left H Ha) Hnb)))
(assume Hna, rec_on Hb (assume Hna, rec_on Hb
(assume Hb : b, inr (assume H : a ↔ b, absurd (iff_mp_right H Hb) Hna)) (assume Hb : b, inr (assume H : a ↔ b, absurd (iff_elim_right H Hb) Hna))
(assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb)))) (assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb))))
theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b) := theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b) :=

View file

@ -1,8 +1,15 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura, Jeremy Avigad -- Authors: Leonardo de Moura, Jeremy Avigad
definition Prop [inline] := Type.{0} definition Prop [inline] := Type.{0}
abbreviation imp (a b : Prop) : Prop := a → b
-- true and false
-- --------------
inductive false : Prop inductive false : Prop
theorem false_elim (c : Prop) (H : false) : c := theorem false_elim (c : Prop) (H : false) : c :=
@ -17,6 +24,10 @@ prefix `¬`:40 := not
notation `assume` binders `,` r:(scoped f, f) := r notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r
-- not
-- ---
theorem not_intro {a : Prop} (H : a → false) : ¬a := H theorem not_intro {a : Prop} (H : a → false) : ¬a := H
theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2 theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2
@ -47,14 +58,18 @@ assume Hna : ¬a, absurd (assume Ha : a, absurd_elim b Ha Hna) H
theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b := theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b :=
assume Hb : b, absurd (assume Ha : a, Hb) H assume Hb : b, absurd (assume Ha : a, Hb) H
-- and
-- ---
inductive and (a b : Prop) : Prop := inductive and (a b : Prop) : Prop :=
| and_intro : a → b → and a b | and_intro : a → b → and a b
infixr `/\`:35 := and infixr `/\`:35 := and
infixr `∧`:35 := and infixr `∧`:35 := and
theorem and_elim {a b c : Prop} (H1 : a → b → c) (H2 : a ∧ b) : c := theorem and_elim {a b c : Prop} (H1 : a ∧ b) (H2 : a → b → c) : c :=
and_rec H1 H2 and_rec H2 H1
theorem and_elim_left {a b : Prop} (H : a ∧ b) : a := theorem and_elim_left {a b : Prop} (H : a ∧ b) : a :=
and_rec (λa b, a) H and_rec (λa b, a) H
@ -71,6 +86,19 @@ assume H : a ∧ b, absurd (and_elim_left H) Hna
theorem and_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) := theorem and_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
assume H : a ∧ b, absurd (and_elim_right H) Hnb assume H : a ∧ b, absurd (and_elim_right H) Hnb
theorem and_imp_and {a b c d : Prop} (H1 : a ∧ b) (H2 : a → c) (H3 : b → d) : c ∧ d :=
and_elim H1 (assume Ha : a, assume Hb : b, and_intro (H2 Ha) (H3 Hb))
theorem imp_and_left {a b c : Prop} (H1 : a ∧ c) (H : a → b) : b ∧ c :=
and_elim H1 (assume Ha : a, assume Hc : c, and_intro (H Ha) Hc)
theorem imp_and_right {a b c : Prop} (H1 : c ∧ a) (H : a → b) : c ∧ b :=
and_elim H1 (assume Hc : c, assume Ha : a, and_intro Hc (H Ha))
-- or
-- --
inductive or (a b : Prop) : Prop := inductive or (a b : Prop) : Prop :=
| or_intro_left : a → or a b | or_intro_left : a → or a b
| or_intro_right : b → or a b | or_intro_right : b → or a b
@ -113,6 +141,10 @@ or_elim H1
(assume H2 : c, or_inl H2) (assume H2 : c, or_inl H2)
(assume H2 : a, or_inr (H H2)) (assume H2 : a, or_inr (H H2))
-- eq
-- --
inductive eq {A : Type} (a : A) : A → Prop := inductive eq {A : Type} (a : A) : A → Prop :=
| refl : eq a a | refl : eq a a
@ -181,6 +213,10 @@ assume Ha, H2 ◂ (H1 Ha)
theorem eq_imp_trans {a b c : Prop} (H1 : a = b) (H2 : b → c) : a → c := theorem eq_imp_trans {a b c : Prop} (H1 : a = b) (H2 : b → c) : a → c :=
assume Ha, H2 (H1 ◂ Ha) assume Ha, H2 (H1 ◂ Ha)
-- ne
-- --
definition ne [inline] {A : Type} (a b : A) := ¬(a = b) definition ne [inline] {A : Type} (a b : A) := ¬(a = b)
infix `≠`:50 := ne infix `≠`:50 := ne
@ -202,6 +238,10 @@ theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
calc_trans eq_ne_trans calc_trans eq_ne_trans
calc_trans ne_eq_trans calc_trans ne_eq_trans
-- iff
-- ---
definition iff (a b : Prop) := (a → b) ∧ (b → a) definition iff (a b : Prop) := (a → b) ∧ (b → a)
infix `<->`:25 := iff infix `<->`:25 := iff
infix `↔`:25 := iff infix `↔`:25 := iff
@ -216,12 +256,6 @@ iff_elim (assume H1 H2, H1) H
theorem iff_elim_right {a b : Prop} (H : a ↔ b) : b → a := theorem iff_elim_right {a b : Prop} (H : a ↔ b) : b → a :=
iff_elim (assume H1 H2, H2) H iff_elim (assume H1 H2, H2) H
theorem iff_mp_left {a b : Prop} (H1 : a ↔ b) (H2 : a) : b :=
(iff_elim_left H1) H2
theorem iff_mp_right {a b : Prop} (H1 : a ↔ b) (H2 : b) : a :=
(iff_elim_right H1) H2
theorem iff_flip_sign {a b : Prop} (H1 : a ↔ b) : ¬a ↔ ¬b := theorem iff_flip_sign {a b : Prop} (H1 : a ↔ b) : ¬a ↔ ¬b :=
iff_intro iff_intro
(assume Hna, mt (iff_elim_right H1) Hna) (assume Hna, mt (iff_elim_right H1) Hna)
@ -232,19 +266,23 @@ iff_intro (assume H, H) (assume H, H)
theorem iff_trans {a b c : Prop} (H1 : a ↔ b) (H2 : b ↔ c) : a ↔ c := theorem iff_trans {a b c : Prop} (H1 : a ↔ b) (H2 : b ↔ c) : a ↔ c :=
iff_intro iff_intro
(assume Ha, iff_mp_left H2 (iff_mp_left H1 Ha)) (assume Ha, iff_elim_left H2 (iff_elim_left H1 Ha))
(assume Hc, iff_mp_right H1 (iff_mp_right H2 Hc)) (assume Hc, iff_elim_right H1 (iff_elim_right H2 Hc))
theorem iff_symm {a b : Prop} (H : a ↔ b) : b ↔ a := theorem iff_symm {a b : Prop} (H : a ↔ b) : b ↔ a :=
iff_intro iff_intro
(assume Hb, iff_mp_right H Hb) (assume Hb, iff_elim_right H Hb)
(assume Ha, iff_mp_left H Ha) (assume Ha, iff_elim_left H Ha)
calc_trans iff_trans calc_trans iff_trans
theorem eq_to_iff {a b : Prop} (H : a = b) : a ↔ b := theorem eq_to_iff {a b : Prop} (H : a = b) : a ↔ b :=
iff_intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) iff_intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
-- comm and assoc for and / or
-- ---------------------------
theorem and_comm (a b : Prop) : a ∧ b ↔ b ∧ a := theorem and_comm (a b : Prop) : a ∧ b ↔ b ∧ a :=
iff_intro (λH, and_swap H) (λH, and_swap H) iff_intro (λH, and_swap H) (λH, and_swap H)
@ -273,6 +311,10 @@ iff_intro
(assume Hb, or_inl (or_inr Hb)) (assume Hb, or_inl (or_inr Hb))
(assume Hc, or_inr Hc))) (assume Hc, or_inr Hc)))
-- exists
-- ------
inductive Exists {A : Type} (P : A → Prop) : Prop := inductive Exists {A : Type} (P : A → Prop) : Prop :=
| exists_intro : ∀ (a : A), P a → Exists P | exists_intro : ∀ (a : A), P a → Exists P
@ -305,6 +347,10 @@ theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop}
obtain w Hw, from H2, obtain w Hw, from H2,
H1 w (and_elim_left Hw) (and_elim_right Hw) H1 w (and_elim_left Hw) (and_elim_right Hw)
-- inhabited
-- ---------
inductive inhabited (A : Type) : Prop := inductive inhabited (A : Type) : Prop :=
| inhabited_intro : A → inhabited A | inhabited_intro : A → inhabited A