feat(library/logic/axioms/examples/diaconescu): remove redundant hypothesis
This commit is contained in:
parent
7529ee0a5c
commit
df8ebeeefc
1 changed files with 1 additions and 2 deletions
|
@ -9,7 +9,6 @@ open eq.ops nonempty inhabited
|
||||||
-- Show that Excluded middle follows from
|
-- Show that Excluded middle follows from
|
||||||
-- Hilbert's choice operator, function extensionality and Prop extensionality
|
-- Hilbert's choice operator, function extensionality and Prop extensionality
|
||||||
context
|
context
|
||||||
hypothesis propext {a b : Prop} : (a → b) → (b → a) → a = b
|
|
||||||
parameter p : Prop
|
parameter p : Prop
|
||||||
|
|
||||||
private definition u [reducible] := epsilon (λx, x = true ∨ p)
|
private definition u [reducible] := epsilon (λx, x = true ∨ p)
|
||||||
|
@ -40,7 +39,7 @@ assume Hp : p,
|
||||||
have Hr : (x = false ∨ p) → (x = true ∨ p), from
|
have Hr : (x = false ∨ p) → (x = true ∨ p), from
|
||||||
assume A, or.inr Hp,
|
assume A, or.inr Hp,
|
||||||
show (x = true ∨ p) = (x = false ∨ p), from
|
show (x = true ∨ p) = (x = false ∨ p), from
|
||||||
propext Hl Hr),
|
propext (iff.intro Hl Hr)),
|
||||||
show u = v, from
|
show u = v, from
|
||||||
Hpred ▸ (eq.refl (epsilon (λ x, x = true ∨ p)))
|
Hpred ▸ (eq.refl (epsilon (λ x, x = true ∨ p)))
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue