feat(library/hott): add more hott definitions

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-15 22:42:28 +01:00
parent f7317a7139
commit dfe48e6abe
4 changed files with 79 additions and 12 deletions

View file

@ -0,0 +1,32 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic
using logic
inductive inhabited (A : Type) : Type :=
| inhabited_intro : A → inhabited A
theorem inhabited_elim {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B
:= inhabited_rec H2 H1
theorem inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B)
:= inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b))
theorem inhabited_sum_left [instance] {A : Type} (B : Type) (H : inhabited A) : inhabited (A + B)
:= inhabited_elim H (λ a, inhabited_intro (inl B a))
theorem inhabited_sum_right [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A + B)
:= inhabited_elim H (λ b, inhabited_intro (inr A b))
theorem inhabited_product [instance] {A : Type} {B : Type} (Ha : inhabited A) (Hb : inhabited B) : inhabited (A × B)
:= inhabited_elim Ha (λ a, (inhabited_elim Hb (λ b, inhabited_intro (a, b))))
theorem inhabited_bool [instance] : inhabited bool
:= inhabited_intro true
theorem inhabited_unit [instance] : inhabited unit
:= inhabited_intro ⋆
theorem inhabited_sigma_pr1 {A : Type} {B : A → Type} (p : Σ x, B x) : inhabited A
:= inhabited_intro (dpr1 p)

View file

@ -10,7 +10,10 @@ infix `=`:50 := path
definition transport {A : Type} {a b : A} {P : A → Type} (H1 : a = b) (H2 : P a) : P b
:= path_rec H2 H1
notation p `*(`:75 u `)` := transport p u
namespace logic
notation p `*(`:75 u `)` := transport p u
end
using logic
definition symm {A : Type} {a b : A} (p : a = b) : b = a
:= p*(refl a)
@ -18,11 +21,11 @@ definition symm {A : Type} {a b : A} (p : a = b) : b = a
definition trans {A : Type} {a b c : A} (p1 : a = b) (p2 : b = c) : a = c
:= p2*(p1)
namespace path_notation
namespace logic
postfix `⁻¹`:100 := symm
infixr `⬝`:75 := trans
end
using path_notation
using logic
theorem trans_refl_right {A : Type} {x y : A} (p : x = y) : p = p ⬝ (refl y)
:= refl p
@ -77,7 +80,10 @@ end
definition homotopy {A : Type} {P : A → Type} (f g : Π x, P x)
:= Π x, f x = g x
infix ``:50 := homotopy
namespace logic
infix ``:50 := homotopy
end
using logic
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
@ -137,35 +143,40 @@ theorem upun (x : unit) : x = ⋆
inductive product (A : Type) (B : Type) : Type :=
| pair : A → B → product A B
infixr `×`:30 := product
infixr `∧`:30 := product
notation `(` h `,` t:(foldl `,` (e r, pair r e) h) `)` := t
definition pr1 {A : Type} {B : Type} (p : A B) : A
definition pr1 {A : Type} {B : Type} (p : A × B) : A
:= product_rec (λ a b, a) p
definition pr2 {A : Type} {B : Type} (p : A B) : B
definition pr2 {A : Type} {B : Type} (p : A × B) : B
:= product_rec (λ a b, b) p
theorem uppt {A : Type} {B : Type} (p : A B) : (pr1 p, pr2 p) = p
theorem uppt {A : Type} {B : Type} (p : A × B) : (pr1 p, pr2 p) = p
:= product_rec (λ x y, refl (x, y)) p
inductive sum (A : Type) (B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B
namespace logic
infixr `+`:25 := sum
end
using logic
infixr ``:25 := sum
theorem sum_elim {a : Type} {b : Type} {c : Type} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
theorem sum_elim {a : Type} {b : Type} {c : Type} (H1 : a + b) (H2 : a → c) (H3 : b → c) : c
:= sum_rec H2 H3 H1
theorem resolve_right {a : Type} {b : Type} (H1 : a b) (H2 : ¬ a) : b
theorem resolve_right {a : Type} {b : Type} (H1 : a + b) (H2 : ¬ a) : b
:= sum_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb)
theorem resolve_left {a : Type} {b : Type} (H1 : a b) (H2 : ¬ b) : a
theorem resolve_left {a : Type} {b : Type} (H1 : a + b) (H2 : ¬ b) : a
:= sum_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2)
theorem or_flip {a : Type} {b : Type} (H : a b) : b a
theorem sum_flip {a : Type} {b : Type} (H : a + b) : b + a
:= sum_elim H (assume Ha, inr b Ha) (assume Hb, inl a Hb)
inductive bool : Type :=
@ -176,6 +187,12 @@ theorem bool_cases (p : bool) : p = true p = false
:= bool_rec (inl _ (refl true)) (inr _ (refl false)) p
inductive Sigma {A : Type} (B : A → Type) : Type :=
| sigma : Π a, B a → Sigma B
| sigma_intro : Π a, B a → Sigma B
notation `Σ` binders `,` r:(scoped P, Sigma P) := r
definition dpr1 {A : Type} {B : A → Type} (p : Σ x, B x) : A
:= Sigma_rec (λ a b, a) p
definition dpr2 {A : Type} {B : A → Type} (p : Σ x, B x) : B (dpr1 p)
:= Sigma_rec (λ a b, b) p

9
library/hott/prop.lean Normal file
View file

@ -0,0 +1,9 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic
definition is_prop (A : Type) := Π (x y : A), x = y
inductive hprop : Type :=
| hprop_intro : Π (A : Type), is_prop A → hprop

9
library/hott/set.lean Normal file
View file

@ -0,0 +1,9 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic
definition is_set (A : Type) := Π (x y : A) (p q : x = y), p = q
inductive hset : Type :=
| hset_intro : Π (A : Type), is_set A → hset