chore(builtin/cast): cleanup
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
3e18cdfeec
commit
dff0b9011b
1 changed files with 19 additions and 19 deletions
|
@ -1,7 +1,7 @@
|
||||||
-- "Type casting" library.
|
-- "Type casting" library.
|
||||||
|
|
||||||
-- Heterogeneous substitution
|
-- Heterogeneous substitution
|
||||||
axiom hsubst {A B : TypeU} {a : A} {b : B} (P : ∀ (T : TypeU), T -> Bool) : P A a → a == b → P B b
|
axiom hsubst {A B : TypeU} {a : A} {b : B} (P : ∀ T : TypeU, T → Bool) : P A a → a == b → P B b
|
||||||
|
|
||||||
universe M >= 1
|
universe M >= 1
|
||||||
universe U >= M + 1
|
universe U >= M + 1
|
||||||
|
@ -28,30 +28,30 @@ axiom cast_eq {A B : TypeU} (H : A == B) (x : A) : x == cast H x
|
||||||
|
|
||||||
-- The CastApp axiom "propagates" the cast over application
|
-- The CastApp axiom "propagates" the cast over application
|
||||||
axiom cast_app {A A' : TypeU} {B : A → TypeU} {B' : A' → TypeU}
|
axiom cast_app {A A' : TypeU} {B : A → TypeU} {B' : A' → TypeU}
|
||||||
(H1 : (∀ x : A, B x) == (∀ x : A', B' x)) (H2 : A == A')
|
(H1 : (∀ x, B x) == (∀ x, B' x)) (H2 : A == A')
|
||||||
(f : ∀ x : A, B x) (x : A) :
|
(f : ∀ x, B x) (x : A) :
|
||||||
cast H1 f (cast H2 x) == f x
|
cast H1 f (cast H2 x) == f x
|
||||||
|
|
||||||
-- Heterogeneous congruence
|
-- Heterogeneous congruence
|
||||||
theorem hcongr
|
theorem hcongr
|
||||||
{A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM}
|
{A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM}
|
||||||
{f : ∀ x : A, B x} {g : ∀ x : A', B' x} {a : A} {b : A'}
|
{f : ∀ x, B x} {g : ∀ x, B' x} {a : A} {b : A'}
|
||||||
(H1 : f == g)
|
(H1 : f == g)
|
||||||
(H2 : a == b)
|
(H2 : a == b)
|
||||||
: f a == g b
|
: f a == g b
|
||||||
:= let L1 : A == A' := type_eq H2,
|
:= let L1 : A == A' := type_eq H2,
|
||||||
L2 : A' == A := symm L1,
|
L2 : A' == A := symm L1,
|
||||||
b' : A := cast L2 b,
|
b' : A := cast L2 b,
|
||||||
L3 : b == b' := cast_eq L2 b,
|
L3 : b == b' := cast_eq L2 b,
|
||||||
L4 : a == b' := htrans H2 L3,
|
L4 : a == b' := htrans H2 L3,
|
||||||
L5 : f a == f b' := congr2 f L4,
|
L5 : f a == f b' := congr2 f L4,
|
||||||
S1 : (∀ x : A', B' x) == (∀ x : A, B x) := symm (type_eq H1),
|
S1 : (∀ x, B' x) == (∀ x, B x) := symm (type_eq H1),
|
||||||
g' : (∀ x : A, B x) := cast S1 g,
|
g' : (∀ x, B x) := cast S1 g,
|
||||||
L6 : g == g' := cast_eq S1 g,
|
L6 : g == g' := cast_eq S1 g,
|
||||||
L7 : f == g' := htrans H1 L6,
|
L7 : f == g' := htrans H1 L6,
|
||||||
L8 : f b' == g' b' := congr1 b' L7,
|
L8 : f b' == g' b' := congr1 b' L7,
|
||||||
L9 : f a == g' b' := htrans L5 L8,
|
L9 : f a == g' b' := htrans L5 L8,
|
||||||
L10 : g' b' == g b := cast_app S1 L2 g b
|
L10 : g' b' == g b := cast_app S1 L2 g b
|
||||||
in htrans L9 L10
|
in htrans L9 L10
|
||||||
|
|
||||||
exit -- Stop here, the following axiom is not sound
|
exit -- Stop here, the following axiom is not sound
|
||||||
|
@ -74,6 +74,6 @@ let L1 : (∀ x : true, true) := (λ x : true, trivial)
|
||||||
-- When we keep Pi/forall as different things, the following two steps can't be used
|
-- When we keep Pi/forall as different things, the following two steps can't be used
|
||||||
L3 : (∀ x : true, true) = true := eqt_intro L1,
|
L3 : (∀ x : true, true) = true := eqt_intro L1,
|
||||||
L4 : (∀ x : false, true) = true := eqt_intro L2,
|
L4 : (∀ x : false, true) = true := eqt_intro L2,
|
||||||
L5 : (∀ x : true, true) = (∀ x : false, true) := trans L3 (symm L4),
|
L5 : (∀ x : true, true) = (∀ x : false, true) := trans L3 (symm L4),
|
||||||
L6 : true = false := dominj L5
|
L6 : true = false := dominj L5
|
||||||
in L6
|
in L6
|
||||||
|
|
Loading…
Reference in a new issue