chore(builtin/cast): cleanup

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-01-09 12:06:22 -08:00
parent 3e18cdfeec
commit dff0b9011b

View file

@ -1,7 +1,7 @@
-- "Type casting" library. -- "Type casting" library.
-- Heterogeneous substitution -- Heterogeneous substitution
axiom hsubst {A B : TypeU} {a : A} {b : B} (P : ∀ (T : TypeU), T -> Bool) : P A a → a == b → P B b axiom hsubst {A B : TypeU} {a : A} {b : B} (P : ∀ T : TypeU, T → Bool) : P A a → a == b → P B b
universe M >= 1 universe M >= 1
universe U >= M + 1 universe U >= M + 1
@ -28,30 +28,30 @@ axiom cast_eq {A B : TypeU} (H : A == B) (x : A) : x == cast H x
-- The CastApp axiom "propagates" the cast over application -- The CastApp axiom "propagates" the cast over application
axiom cast_app {A A' : TypeU} {B : A → TypeU} {B' : A' → TypeU} axiom cast_app {A A' : TypeU} {B : A → TypeU} {B' : A' → TypeU}
(H1 : (∀ x : A, B x) == (∀ x : A', B' x)) (H2 : A == A') (H1 : (∀ x, B x) == (∀ x, B' x)) (H2 : A == A')
(f : ∀ x : A, B x) (x : A) : (f : ∀ x, B x) (x : A) :
cast H1 f (cast H2 x) == f x cast H1 f (cast H2 x) == f x
-- Heterogeneous congruence -- Heterogeneous congruence
theorem hcongr theorem hcongr
{A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM} {A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM}
{f : ∀ x : A, B x} {g : ∀ x : A', B' x} {a : A} {b : A'} {f : ∀ x, B x} {g : ∀ x, B' x} {a : A} {b : A'}
(H1 : f == g) (H1 : f == g)
(H2 : a == b) (H2 : a == b)
: f a == g b : f a == g b
:= let L1 : A == A' := type_eq H2, := let L1 : A == A' := type_eq H2,
L2 : A' == A := symm L1, L2 : A' == A := symm L1,
b' : A := cast L2 b, b' : A := cast L2 b,
L3 : b == b' := cast_eq L2 b, L3 : b == b' := cast_eq L2 b,
L4 : a == b' := htrans H2 L3, L4 : a == b' := htrans H2 L3,
L5 : f a == f b' := congr2 f L4, L5 : f a == f b' := congr2 f L4,
S1 : (∀ x : A', B' x) == (∀ x : A, B x) := symm (type_eq H1), S1 : (∀ x, B' x) == (∀ x, B x) := symm (type_eq H1),
g' : (∀ x : A, B x) := cast S1 g, g' : (∀ x, B x) := cast S1 g,
L6 : g == g' := cast_eq S1 g, L6 : g == g' := cast_eq S1 g,
L7 : f == g' := htrans H1 L6, L7 : f == g' := htrans H1 L6,
L8 : f b' == g' b' := congr1 b' L7, L8 : f b' == g' b' := congr1 b' L7,
L9 : f a == g' b' := htrans L5 L8, L9 : f a == g' b' := htrans L5 L8,
L10 : g' b' == g b := cast_app S1 L2 g b L10 : g' b' == g b := cast_app S1 L2 g b
in htrans L9 L10 in htrans L9 L10
exit -- Stop here, the following axiom is not sound exit -- Stop here, the following axiom is not sound
@ -74,6 +74,6 @@ let L1 : (∀ x : true, true) := (λ x : true, trivial)
-- When we keep Pi/forall as different things, the following two steps can't be used -- When we keep Pi/forall as different things, the following two steps can't be used
L3 : (∀ x : true, true) = true := eqt_intro L1, L3 : (∀ x : true, true) = true := eqt_intro L1,
L4 : (∀ x : false, true) = true := eqt_intro L2, L4 : (∀ x : false, true) = true := eqt_intro L2,
L5 : (∀ x : true, true) = (∀ x : false, true) := trans L3 (symm L4), L5 : (∀ x : true, true) = (∀ x : false, true) := trans L3 (symm L4),
L6 : true = false := dominj L5 L6 : true = false := dominj L5
in L6 in L6