fix(hott): make sure the HoTT library compiles with --to_axiom

This commit is contained in:
Floris van Doorn 2015-11-02 12:28:22 -05:00 committed by Leonardo de Moura
parent 5095f05303
commit e00ccff6de
2 changed files with 6 additions and 6 deletions

View file

@ -110,7 +110,7 @@ namespace functor
(functor_uncurry_id G)
(functor_uncurry_comp G)
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
definition functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
functor_eq (λp, ap (to_fun_ob F) !prod.eta)
begin
intro cd cd' fg,
@ -134,7 +134,7 @@ namespace functor
rewrite [▸*, ↑functor_uncurry_hom, respect_id, ▸*, id_right]}
end
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
definition functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
begin
fapply functor_eq, exact (functor_curry_functor_uncurry_ob G),
intro c c' f,

View file

@ -154,15 +154,15 @@ namespace is_trunc
(λn IH Hn, is_trunc_of_imp_is_trunc)
Hn H
-- the following cannot be instances in their current form, because they are looping
theorem is_trunc_of_is_contr (A : Type) (n : trunc_index) [H : is_contr A] : is_trunc n A :=
-- these must be definitions, because we need them to compute sometimes
definition is_trunc_of_is_contr (A : Type) (n : trunc_index) [H : is_contr A] : is_trunc n A :=
trunc_index.rec_on n H _
theorem is_trunc_succ_of_is_hprop (A : Type) (n : trunc_index) [H : is_hprop A]
definition is_trunc_succ_of_is_hprop (A : Type) (n : trunc_index) [H : is_hprop A]
: is_trunc (n.+1) A :=
is_trunc_of_leq A (show -1 ≤ n.+1, from star)
theorem is_trunc_succ_succ_of_is_hset (A : Type) (n : trunc_index) [H : is_hset A]
definition is_trunc_succ_succ_of_is_hset (A : Type) (n : trunc_index) [H : is_hset A]
: is_trunc (n.+2) A :=
is_trunc_of_leq A (show 0 ≤ n.+2, from star)