diff --git a/library/algebra/order.lean b/library/algebra/order.lean index 0ef206de4..be70d9e0c 100644 --- a/library/algebra/order.lean +++ b/library/algebra/order.lean @@ -286,7 +286,7 @@ structure decidable_linear_order [class] (A : Type) extends linear_strong_order_ section variable [s : decidable_linear_order A] - variables {a b c d : A} + variables (a b c d : A) include s open decidable @@ -302,6 +302,8 @@ section (assume H2 : b < a, inr (not_le_of_gt H2)) (assume H2 : ¬ b < a, inl (le_of_not_gt H2))) + variables {a b c d} + definition has_decidable_eq [instance] : decidable (a = b) := by_cases (assume H : a ≤ b, diff --git a/library/algebra/ordered_ring.lean b/library/algebra/ordered_ring.lean index c349149dd..38531ffbc 100644 --- a/library/algebra/ordered_ring.lean +++ b/library/algebra/ordered_ring.lean @@ -118,6 +118,7 @@ section include s theorem zero_lt_one : 0 < (1:A) := linear_ordered_semiring.zero_lt_one A + theorem zero_le_one : 0 ≤ (1:A) := le_of_lt zero_lt_one theorem lt_of_mul_lt_mul_left (H : c * a < c * b) (Hc : c ≥ 0) : a < b := lt_of_not_ge @@ -394,8 +395,6 @@ section (assume H : a ≥ 0, mul_nonneg H H) (assume H : a ≤ 0, mul_nonneg_of_nonpos_of_nonpos H H) - theorem zero_le_one : 0 ≤ (1:A) := one_mul 1 ▸ mul_self_nonneg 1 - theorem pos_and_pos_or_neg_and_neg_of_mul_pos {a b : A} (Hab : a * b > 0) : (a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) := lt.by_cases diff --git a/library/data/bv.lean b/library/data/bv.lean index 2907beb2f..625d46fee 100644 --- a/library/data/bv.lean +++ b/library/data/bv.lean @@ -22,12 +22,12 @@ open tuple definition bv [reducible] (n : ℕ) := tuple bool n -- Create a zero bitvector -definition bv_zero (n : ℕ) : bv n := replicate ff +definition bv_zero (n : ℕ) : bv n := replicate n ff -- Create a bitvector with the constant one. definition bv_one : Π (n : ℕ), bv n - | 0 := replicate ff - | (succ n) := (replicate ff : bv n) ++ (tt :: nil) + | 0 := nil + | (succ n) := (replicate n ff : bv n) ++ (tt :: nil) definition bv_cong {a b : ℕ} : (a = b) → bv a → bv b | c (tag x p) := tag x (c ▸ p) @@ -38,36 +38,30 @@ section shift definition bv_shl {n:ℕ} : bv n → ℕ → bv n | x i := if le : i ≤ n then - let r := dropn i x ++ replicate ff in + let r := dropn i x ++ replicate i ff in let eq := calc (n-i) + i = n : nat.sub_add_cancel le in bv_cong eq r else bv_zero n - -- unsigned shift right + definition fill_shr {n:ℕ} (x : bv n) (i : ℕ) (fill : bool) : bv n := + let y := replicate (min n i) fill ++ firstn (n-i) x in + have min n i + min (n-i) n = n, from if h : i ≤ n then + by rewrite [min_eq_right h, min_eq_left !sub_le, -nat.add_sub_assoc h, + nat.add_sub_cancel_left] + else + have h : i ≥ n, from le_of_not_ge h, + by rewrite [min_eq_left h, sub_eq_zero_of_le h, min_eq_left !zero_le], + bv_cong this y + + -- unsigned shift right definition bv_ushr {n:ℕ} : bv n → ℕ → bv n | x i := - if le : i ≤ n then - let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in - let eq := calc (i+(n-i)) = (n - i) + i : add.comm - ... = n : nat.sub_add_cancel le in - bv_cong eq (replicate ff ++ y) - else - bv_zero n + fill_shr x i ff -- signed shift right definition bv_sshr {m:ℕ} : bv (succ m) → ℕ → bv (succ m) - | x i := - let n := succ m in - if le : i ≤ n then - let z : bv i := replicate (head x) in - let y : bv (n-i) := @firstn _ _ (n - i) (sub_le n i) x in - let eq := calc (i+(n-i)) = (n-i) + i : add.comm - ... = n : nat.sub_add_cancel le in - bv_cong eq (z ++ y) - else - bv_zero n - + | x i := head x :: fill_shr (tail x) i (head x) end shift section bitwise diff --git a/library/data/tuple.lean b/library/data/tuple.lean index 471c20b11..b03130c2b 100644 --- a/library/data/tuple.lean +++ b/library/data/tuple.lean @@ -272,18 +272,17 @@ namespace tuple variable {n : ℕ} - definition replicate : A → tuple A n + definition replicate (n : ℕ) : A → tuple A n | a := tag (list.replicate n a) (length_replicate n a) definition dropn : Π (i:ℕ), tuple A n → tuple A (n - i) | i (tag l p) := tag (list.dropn i l) (p ▸ list.length_dropn i l) - definition firstn : Π (i:ℕ) {p:i ≤ n}, tuple A n → tuple A i - | i isLe (tag l p) := + definition firstn : Π (i:ℕ), tuple A n → tuple A (min i n) + | i (tag l p) := let q := calc list.length (list.firstn i l) = min i (list.length l) : list.length_firstn_eq - ... = min i n : p - ... = i : min_eq_left isLe in + ... = min i n : p in tag (list.firstn i l) q definition map₂ : (A → B → C) → tuple A n → tuple B n → tuple C n