From e112468f99147474f5d74498192876bf4f7dd632 Mon Sep 17 00:00:00 2001 From: Rob Lewis Date: Tue, 9 Jun 2015 15:39:28 +1000 Subject: [PATCH] feat(library/data/real): prove reals are Cauchy complete --- library/data/real/basic.lean | 10 +- library/data/real/complete.lean | 484 ++++++++++++++++++++++++++++++++ library/data/real/division.lean | 35 ++- library/data/real/order.lean | 30 +- 4 files changed, 535 insertions(+), 24 deletions(-) create mode 100644 library/data/real/complete.lean diff --git a/library/data/real/basic.lean b/library/data/real/basic.lean index 7098d6522..1ab83492c 100644 --- a/library/data/real/basic.lean +++ b/library/data/real/basic.lean @@ -11,7 +11,7 @@ To do: o Rename things and possibly make theorems private -/ -import algebra.ordered_field data.nat data.rat.order +import data.nat data.rat.order open nat eq eq.ops open -[coercions] rat ---------------------------------------------------------------------------------------------------- @@ -46,11 +46,11 @@ notation p `≥` q := q ≤ p definition lt (p q : pnat) := p~ < q~ infix `<` := lt -theorem pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) := +definition pnat_le_decidable [instance] (p q : pnat) : decidable (p ≤ q) := pnat.rec_on p (λ n H, pnat.rec_on q (λ m H2, if Hl : n ≤ m then decidable.inl Hl else decidable.inr Hl)) -theorem pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) := +definition pnat_lt_decidable [instance] {p q : pnat} : decidable (p < q) := pnat.rec_on p (λ n H, pnat.rec_on q (λ m H2, if Hl : n < m then decidable.inl Hl else decidable.inr Hl)) @@ -126,6 +126,8 @@ theorem ge_of_inv_le {p q : ℕ+} (H : p⁻¹ ≤ q⁻¹) : q < p := sorry theorem padd_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := sorry +theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := sorry + theorem add_halves_double (m n : ℕ+) : m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := have simp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), from sorry, @@ -150,6 +152,8 @@ theorem pnat_mul_assoc (a b c : ℕ+) : a * b * c = a * (b * c) := sorry theorem pnat_mul_comm (a b : ℕ+) : a * b = b * a := sorry +theorem pnat_add_assoc (a b c : ℕ+) : a + b + c = a + (b + c) := sorry + theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) : p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := sorry diff --git a/library/data/real/complete.lean b/library/data/real/complete.lean new file mode 100644 index 000000000..70c3680b3 --- /dev/null +++ b/library/data/real/complete.lean @@ -0,0 +1,484 @@ +/- +Copyright (c) 2015 Robert Y. Lewis. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Author: Robert Y. Lewis +The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. +This construction follows Bishop and Bridges (1985). + +At this point, we no longer proceed constructively: this file makes heavy use of decidability, + excluded middle, and Hilbert choice. + +Here, we show that ℝ is complete. +-/ + +import data.real.basic data.real.order data.real.division data.rat data.nat logic.axioms.classical +open -[coercions] rat +open -[coercions] nat +open algebra +open eq.ops + + +local notation 2 := pnat.pos (nat.of_num 2) dec_trivial +local notation 3 := pnat.pos (nat.of_num 3) dec_trivial + +namespace s + +theorem nonneg_of_ge_neg_invs (a : ℚ) (H : ∀ n : ℕ+, -n⁻¹ ≤ a) : 0 ≤ a := sorry + +theorem ineq_helper (a b c : ℚ) : c ≤ a + b → -a ≤ b - c := sorry + +definition const (a : ℚ) : seq := λ n, a + +theorem const_reg (a : ℚ) : regular (const a) := + begin + intros, + rewrite [↑const, sub_self, abs_zero], + apply add_invs_nonneg + end + +definition r_const (a : ℚ) : reg_seq := reg_seq.mk (const a) (const_reg a) + +theorem rat_approx_l1 {s : seq} (H : regular s) : + ∀ n : ℕ+, ∃ q : ℚ, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → abs (s m - q) ≤ n⁻¹ := + begin + intro n, + existsi (s (2 * n)), + existsi 2 * n, + intro m Hm, + apply rat.le.trans, + apply H, + rewrite -(padd_halves n), + apply rat.add_le_add_right, + apply inv_ge_of_le Hm + end + +theorem rat_approx {s : seq} (H : regular s) : + ∀ n : ℕ+, ∃ q : ℚ, s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) := + begin + intro m, + rewrite ↑s_le, + apply exists.elim (rat_approx_l1 H m), + intro q Hq, + apply exists.elim Hq, + intro N HN, + existsi q, + apply nonneg_of_bdd_within, + repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg + | assumption), + intro n, + existsi N, + intro p Hp, + rewrite ↑[sadd, sneg, s_abs, const], + apply rat.le.trans, + rotate 1, + apply rat.sub_le_sub_left, + apply HN, + apply ple.trans, + apply Hp, + rewrite -*pnat_mul_assoc, + apply pnat.mul_le_mul_left, + rewrite [sub_self, -neg_zero], + apply neg_le_neg, + apply rat.le_of_lt, + apply inv_pos + end + +definition r_abs (s : reg_seq) : reg_seq := + reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s)) + +theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) : + s_abs s ≡ s_abs t := + begin + rewrite [↑equiv at *], + intro n, + rewrite ↑s_abs, + apply rat.le.trans, + apply abs_abs_sub_abs_le_abs_sub, + apply Heq + end + +theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) := + abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H + +theorem r_rat_approx (s : reg_seq) : + ∀ n : ℕ+, ∃ q : ℚ, r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) := + rat_approx (reg_seq.is_reg s) + +theorem const_bound {s : seq} (Hs : regular s) (n : ℕ+) : s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) := + begin + rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const], + intro m, + apply ineq_helper, + apply rat.le.trans, + apply Hs, + apply rat.add_le_add_right, + rewrite -*pnat_mul_assoc, + apply inv_ge_of_le, + apply pnat.mul_le_mul_left + end + +theorem abs_const (a : ℚ) : const (abs a) ≡ s_abs (const a) := + begin + rewrite [↑s_abs, ↑const], + apply equiv.refl + end + +theorem r_abs_const (a : ℚ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a + +theorem add_consts (a b : ℚ) : sadd (const a) (const b) ≡ const (a + b) := + begin + rewrite [↑sadd, ↑const], + apply equiv.refl + end + +theorem r_add_consts (a b : ℚ) : requiv (r_const a + r_const b) (r_const (a + b)) := add_consts a b + +theorem const_le_const_of_le {a b : ℚ} (H : a ≤ b) : s_le (const a) (const b) := + begin + rewrite [↑s_le, ↑nonneg], + intro n, + rewrite [↑sadd, ↑sneg, ↑const], + apply rat.le.trans, + apply rat.neg_nonpos_of_nonneg, + apply rat.le_of_lt, + apply inv_pos, + apply iff.mp' !rat.sub_nonneg_iff_le, + apply H + end + +theorem le_of_const_le_const {a b : ℚ} (H : s_le (const a) (const b)) : a ≤ b := + begin + rewrite [↑s_le at H, ↑nonneg at H, ↑sadd at H, ↑sneg at H, ↑const at H], + apply iff.mp !rat.sub_nonneg_iff_le, + apply nonneg_of_ge_neg_invs _ H + end + +theorem r_const_le_const_of_le {a b : ℚ} (H : a ≤ b) : r_le (r_const a) (r_const b) := + const_le_const_of_le H + +theorem r_le_of_const_le_const {a b : ℚ} (H : r_le (r_const a) (r_const b)) : a ≤ b := + le_of_const_le_const H + +theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s := + begin + apply eq_of_bdd, + apply abs_reg_of_reg Hs, + apply Hs, + intro j, + rewrite ↑s_abs, + let Hz' := s_nonneg_of_ge_zero Hs Hz, + existsi 2 * j, + intro n Hn, + apply or.elim (decidable.em (s n ≥ 0)), + intro Hpos, + rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero], + apply rat.le_of_lt, + apply inv_pos, + intro Hneg, + let Hneg' := lt_of_not_ge Hneg, + have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'), + rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn], + apply rat.le.trans, + apply rat.add_le_add, + repeat (apply rat.neg_le_neg; apply Hz'), + rewrite *rat.neg_neg, + apply rat.le.trans, + apply rat.add_le_add, + repeat (apply inv_ge_of_le; apply Hn), + rewrite padd_halves, + apply rat.le.refl + end + +theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s := + begin + apply eq_of_bdd, + apply abs_reg_of_reg Hs, + apply reg_neg_reg Hs, + intro j, + rewrite [↑s_abs, ↑s_le at Hz], + have Hz' : nonneg (sneg s), begin + apply nonneg_of_nonneg_equiv, + rotate 3, + apply Hz, + rotate 2, + apply s_zero_add, + repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg) + end, + existsi 2 * j, + intro n Hn, + apply or.elim (decidable.em (s n ≥ 0)), + intro Hpos, + have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos, + rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn], + rewrite [↑nonneg at Hz', ↑sneg at Hz'], + apply rat.le.trans, + apply rat.add_le_add, + repeat apply (rat.le_of_neg_le_neg !Hz'), + apply rat.le.trans, + apply rat.add_le_add, + repeat (apply inv_ge_of_le; apply Hn), + rewrite padd_halves, + apply rat.le.refl, + intro Hneg, + let Hneg' := lt_of_not_ge Hneg, + rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self, + abs_zero], + apply rat.le_of_lt, + apply inv_pos + end + +theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s := + equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz + +theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) := + equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz + +end s + +namespace real + +theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) := sorry + +theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) := sorry + +theorem r_abs_add_three (a b c : ℝ) : abs (a + b + c) ≤ abs a + abs b + abs c := + begin + apply algebra.le.trans, + apply algebra.abs_add_le_abs_add_abs, + apply algebra.le.trans, + apply algebra.add_le_add_right, + apply algebra.abs_add_le_abs_add_abs, + apply algebra.le.refl + end + +theorem r_add_le_add_three (a b c d e f : ℝ) (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) : + a + b + c ≤ d + e + f := + begin + apply algebra.le.trans, + apply algebra.add_le_add, + apply algebra.add_le_add, + repeat assumption, + apply algebra.le.refl + end + +theorem re_add_comm_3 (a b c : ℝ) : a + b + c = c + b + a := sorry + +definition rep (x : ℝ) : reg_seq := some (quot.exists_rep x) + +definition const (a : ℚ) : ℝ := quot.mk (s.r_const a) + +theorem add_consts (a b : ℚ) : const a + const b = const (a + b) := + quot.sound (s.r_add_consts a b) + +theorem sub_consts (a b : ℚ) : const a - const b = const (a - b) := !add_consts + +theorem add_half_const (n : ℕ+) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) := + by rewrite [add_consts, padd_halves] + +theorem const_le_const_of_le (a b : ℚ) : a ≤ b → const a ≤ const b := + s.r_const_le_const_of_le + +theorem le_of_const_le_const (a b : ℚ) : const a ≤ const b → a ≤ b := + s.r_le_of_const_le_const + +definition re_abs (x : ℝ) : ℝ := + quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab)) + +theorem r_abs_nonneg {x : ℝ} : 0 ≤ x → re_abs x = x := + quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha)) + +theorem r_abs_nonpos {x : ℝ} : x ≤ 0 → re_abs x = -x := + quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha)) + +theorem abs_const' (a : ℚ) : const (rat.abs a) = re_abs (const a) := quot.sound (s.r_abs_const a) + +theorem re_abs_is_abs : re_abs = algebra.abs := funext + (begin + intro x, + rewrite ↑abs, + apply eq.symm, + let Hor := decidable.em (0 ≤ x), + apply or.elim Hor, + intro Hor1, + rewrite [(if_pos Hor1), r_abs_nonneg Hor1], + intro Hor2, + let Hor2' := algebra.le_of_lt (algebra.lt_of_not_ge Hor2), + rewrite [(if_neg Hor2), r_abs_nonpos Hor2'] + end) + +theorem abs_const (a : ℚ) : const (rat.abs a) = abs (const a) := + by rewrite -re_abs_is_abs -- ???? + +theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - const q) ≤ const n⁻¹ := + quot.induction_on x (λ s n, s.r_rat_approx s n) + +theorem rat_approx (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, abs (x - const q) ≤ const n⁻¹ := + by rewrite -re_abs_is_abs; apply rat_approx' + +definition approx (x : ℝ) (n : ℕ+) := some (rat_approx x n) + +theorem approx_spec (x : ℝ) (n : ℕ+) : abs (x - (const (approx x n))) ≤ const n⁻¹ := + some_spec (rat_approx x n) + +theorem approx_spec' (x : ℝ) (n : ℕ+) : abs ((const (approx x n)) - x) ≤ const n⁻¹ := + by rewrite algebra.abs_sub; apply approx_spec + +notation `r_seq` := ℕ+ → ℝ + +definition converges_to (X : r_seq) (a : ℝ) (N : ℕ+ → ℕ+) := + ∀ k : ℕ+, ∀ n : ℕ+, n ≥ N k → abs (X n - a) ≤ const k⁻¹ + +definition cauchy (X : r_seq) (M : ℕ+ → ℕ+) := + ∀ k : ℕ+, ∀ m n : ℕ+, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ const k⁻¹ + +theorem cauchy_of_converges_to {X : r_seq} {a : ℝ} {N : ℕ+ → ℕ+} (Hc : converges_to X a N) : + cauchy X (λ k, N (2 * k)) := + begin + intro k m n Hm Hn, + rewrite (rewrite_helper9 a), + apply algebra.le.trans, + apply algebra.abs_add_le_abs_add_abs, + apply algebra.le.trans, + apply algebra.add_le_add, + apply Hc, + apply Hm, + rewrite algebra.abs_neg, + apply Hc, + apply Hn, + rewrite add_half_const, + apply !algebra.le.refl + end + +definition Nb (M : ℕ+ → ℕ+) := λ k, max (3 * k) (M (2 * k)) + +theorem Nb_spec_right (M : ℕ+ → ℕ+) (k : ℕ+) : M (2 * k) ≤ Nb M k := !max_right + +theorem Nb_spec_left (M : ℕ+ → ℕ+) (k : ℕ+) : 3 * k ≤ Nb M k := !max_left + +definition lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : seq := + λ k, approx (X (Nb M k)) (2 * k) + +theorem lim_seq_reg_helper {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) {m n : ℕ+} + (Hmn : M (2 * n) ≤M (2 * m)) : + abs (const (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs + (X (Nb M n) - const (lim_seq Hc n)) ≤ const (m⁻¹ + n⁻¹) := + begin + apply algebra.le.trans, + apply r_add_le_add_three, + apply approx_spec', + rotate 1, + apply approx_spec, + rotate 1, + apply Hc, + rotate 1, + apply Nb_spec_right, + rotate 1, + apply ple.trans, + apply Hmn, + apply Nb_spec_right, + rewrite [*add_consts, rat.add.assoc, padd_halves], + apply const_le_const_of_le, + apply rat.add_le_add_right, + apply inv_ge_of_le, + apply pnat.mul_le_mul_left + end + +theorem lim_seq_reg {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : regular (lim_seq Hc) := + begin + rewrite ↑regular, + intro m n, + apply le_of_const_le_const, + rewrite [abs_const, -sub_consts, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))], + apply algebra.le.trans, + apply r_abs_add_three, + let Hor := decidable.em (M (2 * m) ≥ M (2 * n)), + apply or.elim Hor, + intro Hor1, + apply lim_seq_reg_helper Hc Hor1, + intro Hor2, + let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2), + rewrite [algebra.abs_sub (X (Nb M n)), algebra.abs_sub (X (Nb M m)), algebra.abs_sub, -- ??? + rat.add.comm, re_add_comm_3], + apply lim_seq_reg_helper Hc Hor2' + end + +theorem lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) : + s.s_le (s.s_abs (sadd (lim_seq Hc) (sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) := + begin + apply s.const_bound, + apply lim_seq_reg + end + +definition r_lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : reg_seq := + reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc) + +theorem r_lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) : + s.r_le (s.r_abs (((r_lim_seq Hc) + -s.r_const ((reg_seq.sq (r_lim_seq Hc)) k)))) (s.r_const (k)⁻¹) := + lim_seq_spec Hc k + +definition lim {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : ℝ := + quot.mk (r_lim_seq Hc) + +theorem re_lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : + re_abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ := + r_lim_seq_spec Hc k + +theorem lim_spec' {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : + abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ := + by rewrite -re_abs_is_abs; apply re_lim_spec + +theorem lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : + abs ((const ((lim_seq Hc) k)) - (lim Hc)) ≤ const (k)⁻¹ := + by rewrite algebra.abs_sub; apply lim_spec' + +theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : + converges_to X (lim Hc) (Nb M) := + begin + intro k n Hn, + rewrite (rewrite_helper10 (X (Nb M n)) (const (lim_seq Hc n))), + apply algebra.le.trans, + apply r_abs_add_three, + apply algebra.le.trans, + apply r_add_le_add_three, + apply Hc, + apply ple.trans, + rotate 1, + apply Hn, + rotate_right 1, + apply Nb_spec_right, + have HMk : M (2 * k) ≤ Nb M n, begin + apply ple.trans, + apply Nb_spec_right, + apply ple.trans, + apply Hn, + apply ple.trans, + apply pnat.mul_le_mul_left 3, + apply Nb_spec_left + end, + apply HMk, + rewrite ↑lim_seq, + apply approx_spec, + apply lim_spec, + rewrite 2 add_consts, + apply const_le_const_of_le, + apply rat.le.trans, + apply add_le_add_three, + apply rat.le.refl, + apply inv_ge_of_le, + apply pnat_mul_le_mul_left', + apply ple.trans, + rotate 1, + apply Hn, + rotate_right 1, + apply Nb_spec_left, + apply inv_ge_of_le, + apply ple.trans, + rotate 1, + apply Hn, + rotate_right 1, + apply Nb_spec_left, + rewrite [-*pnat_mul_assoc, p_add_fractions], + apply rat.le.refl + end + +end real diff --git a/library/data/real/division.lean b/library/data/real/division.lean index 4837ade60..2239ad2cc 100644 --- a/library/data/real/division.lean +++ b/library/data/real/division.lean @@ -568,6 +568,33 @@ theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s if H : s ≡ t then or.inr H else or.inl (lt_of_le_and_sep Hs Ht (and.intro Hle (sep_of_nequiv Hs Ht H))) +theorem s_le_of_equiv_le_left {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (Heq : s ≡ t) (Hle : s_le s u) : s_le t u := + begin + rewrite ↑s_le at *, + apply nonneg_of_nonneg_equiv, + rotate 2, + apply add_well_defined, + rotate 4, + apply equiv.refl, + apply neg_well_defined, + apply Heq, + repeat (assumption | apply reg_add_reg | apply reg_neg_reg) + end + +theorem s_le_of_equiv_le_right {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) + (Heq : t ≡ u) (Hle : s_le s t) : s_le s u := + begin + rewrite ↑s_le at *, + apply nonneg_of_nonneg_equiv, + rotate 2, + apply add_well_defined, + rotate 4, + apply Heq, + apply equiv.refl, + repeat (assumption | apply reg_add_reg | apply reg_neg_reg) + end + ----------------------------- definition r_inv (s : reg_seq) : reg_seq := reg_seq.mk (s_inv (reg_seq.is_reg s)) @@ -593,6 +620,11 @@ theorem r_sep_of_nequiv (s t : reg_seq) (Hneq : ¬ requiv s t) : r_sep s t := theorem r_lt_or_equiv_of_le (s t : reg_seq) (Hle : r_le s t) : r_lt s t ∨ requiv s t := lt_or_equiv_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle +theorem r_le_of_equiv_le_left {s t u : reg_seq} (Heq : requiv s t) (Hle : r_le s u) : r_le t u := + s_le_of_equiv_le_left (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle + +theorem r_le_of_equiv_le_right {s t u : reg_seq} (Heq : requiv t u) (Hle : r_le s t) : r_le s u := + s_le_of_equiv_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle end s @@ -642,7 +674,8 @@ theorem dec_lt : decidable_rel lt := apply prop_decidable end -definition linear_ordered_field : algebra.discrete_linear_ordered_field ℝ := +open [classes] algebra +definition linear_ordered_field [instance] : algebra.discrete_linear_ordered_field ℝ := ⦃ algebra.discrete_linear_ordered_field, comm_ring, ordered_ring, le_total := le_total, mul_inv_cancel := mul_inv, diff --git a/library/data/real/order.lean b/library/data/real/order.lean index c69e7d0f4..bff8ad8b3 100644 --- a/library/data/real/order.lean +++ b/library/data/real/order.lean @@ -53,8 +53,7 @@ theorem bdd_away_of_pos {s : seq} (Hs : regular s) (H : pos s) : let Em := sep_by_inv Hn, apply exists.elim Em, intro N HN, - fapply exists.intro, - exact N, + existsi N, intro m Hm, have Habs : abs (s m - s n) ≥ s n - s m, by rewrite abs_sub; apply le_abs_self, have Habs' : s m + abs (s m - s n) ≥ s n, from (iff.mp' (le_add_iff_sub_left_le _ _ _)) Habs, @@ -80,8 +79,7 @@ theorem pos_of_bdd_away {s : seq} (H : ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → ( rewrite ↑pos, apply exists.elim H, intro N HN, - fapply exists.intro, - exact (N + pone), + existsi (N + pone), apply lt_of_lt_of_le, apply inv_add_lt_left, apply HN, @@ -93,8 +91,7 @@ theorem bdd_within_of_nonneg {s : seq} (Hs : regular s) (H : nonneg s) : ∀ n : ℕ+, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → s m ≥ -n⁻¹ := begin intros, - fapply exists.intro, - exact n, + existsi n, intro m Hm, rewrite ↑nonneg at H, apply le.trans, @@ -149,8 +146,7 @@ theorem pos_of_pos_equiv {s t : seq} (Hs : regular s) (Heq : s ≡ t) (Hp : pos rewrite [↑pos at *], apply exists.elim (bdd_away_of_pos Hs Hp), intro N HN, - fapply exists.intro, - exact 2 * 2 * N, + existsi 2 * 2 * N, apply lt_of_lt_of_le, rotate 1, apply ge_sub_of_abs_sub_le_right, @@ -174,8 +170,7 @@ theorem nonneg_of_nonneg_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (He let Bd := (bdd_within_of_nonneg Hs Hp) (2 * 2 * n), apply exists.elim Bd, intro Ns HNs, - fapply exists.intro, - exact max Ns (2 * 2 * n), + existsi max Ns (2 * 2 * n), intro m Hm, apply le.trans, rotate 1, @@ -223,8 +218,7 @@ theorem zero_nonneg : nonneg zero := theorem s_zero_lt_one : s_lt zero one := begin rewrite [↑s_lt, ↑zero, ↑sadd, ↑sneg, ↑one, neg_zero, add_zero, ↑pos], - fapply exists.intro, - exact 2, + existsi 2, apply inv_lt_one_of_gt, apply one_lt_two end @@ -248,8 +242,7 @@ theorem s_nonneg_of_pos {s : seq} (Hs : regular s) (H : pos s) : nonneg s := let Bt := bdd_away_of_pos Hs H, apply exists.elim Bt, intro N HN, - fapply exists.intro, - exact N, + existsi N, intro m Hm, apply le.trans, rotate 1, @@ -533,8 +526,7 @@ theorem s_mul_pos_of_pos {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : po intros Ns HNs, apply exists.elim (bdd_away_of_pos Ht Hpt), intros Nt HNt, - fapply exists.intro, - exact 2 * max Ns Nt * max Ns Nt, + existsi 2 * max Ns Nt * max Ns Nt, rewrite ↑smul, apply lt_of_lt_of_le, rotate 1, @@ -835,8 +827,7 @@ theorem s_lt_of_lt_of_le {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r apply exists.elim (bdd_within_of_nonneg Runt Htu (2 * Nt)), intro Nu HNu, apply pos_of_bdd_away, - fapply exists.intro, - exact max (2 * Nt) Nu, + existsi max (2 * Nt) Nu, intro n Hn, rewrite Hcan, apply rat.le.trans, @@ -876,8 +867,7 @@ theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : r apply exists.elim (bdd_within_of_nonneg Rtns Hst (2 * Nu)), intro Nt HNt, apply pos_of_bdd_away, - fapply exists.intro, - exact max (2 * Nu) Nt, + existsi max (2 * Nu) Nt, intro n Hn, rewrite Hcan, apply rat.le.trans,