feat(circle): show that x = x in the circle is always Z

This commit is contained in:
Floris van Doorn 2015-07-29 16:08:28 +02:00
parent 7a780b1b60
commit e198be318f

View file

@ -223,7 +223,7 @@ namespace circle
--simplify after #587 --simplify after #587
end end
definition circle_eq_equiv (x : circle) : (base = x) ≃ circle.code x := definition circle_eq_equiv [constructor] (x : circle) : (base = x) ≃ circle.code x :=
begin begin
fapply equiv.MK, fapply equiv.MK,
{ exact circle.encode}, { exact circle.encode},
@ -232,7 +232,7 @@ namespace circle
{ intro p, cases p, exact idp}, { intro p, cases p, exact idp},
end end
definition base_eq_base_equiv : base = base ≃ := definition base_eq_base_equiv [constructor] : base = base ≃ :=
circle_eq_equiv base circle_eq_equiv base
definition decode_add (a b : ) : definition decode_add (a b : ) :
@ -247,16 +247,26 @@ namespace circle
definition fg_carrier_equiv_int : π₁(S¹) ≃ := definition fg_carrier_equiv_int : π₁(S¹) ≃ :=
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !equiv_trunc⁻¹ᵉ trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !equiv_trunc⁻¹ᵉ
definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p :=
eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm])
definition fundamental_group_of_circle : π₁(S¹) = group_integers := definition fundamental_group_of_circle : π₁(S¹) = group_integers :=
begin begin
apply (Group_eq fg_carrier_equiv_int), apply (Group_eq fg_carrier_equiv_int),
intros g h, intros g h,
induction g with g', induction h with h', induction g with g', induction h with h',
-- esimp at *,
-- esimp [fg_carrier_equiv_int,equiv.trans,equiv.symm,equiv_trunc,trunc_equiv_trunc,
-- base_eq_base_equiv,circle_eq_equiv,is_equiv_tr,semigroup.to_has_mul,monoid.to_semigroup,
-- group.to_monoid,fundamental_group.mul],
apply encode_con, apply encode_con,
end end
definition eq_equiv_Z (x : S¹) : x = x ≃ :=
begin
induction x,
{ apply base_eq_base_equiv},
{ apply equiv_pathover, intro p p' q, apply pathover_of_eq,
let H := eq_of_square (square_of_pathover q),
rewrite con_comm_base at H,
let H' := cancel_left H,
induction H', reflexivity}
end
end circle end circle