feat(circle): show that x = x in the circle is always Z
This commit is contained in:
parent
7a780b1b60
commit
e198be318f
1 changed files with 16 additions and 6 deletions
|
@ -223,7 +223,7 @@ namespace circle
|
||||||
--simplify after #587
|
--simplify after #587
|
||||||
end
|
end
|
||||||
|
|
||||||
definition circle_eq_equiv (x : circle) : (base = x) ≃ circle.code x :=
|
definition circle_eq_equiv [constructor] (x : circle) : (base = x) ≃ circle.code x :=
|
||||||
begin
|
begin
|
||||||
fapply equiv.MK,
|
fapply equiv.MK,
|
||||||
{ exact circle.encode},
|
{ exact circle.encode},
|
||||||
|
@ -232,7 +232,7 @@ namespace circle
|
||||||
{ intro p, cases p, exact idp},
|
{ intro p, cases p, exact idp},
|
||||||
end
|
end
|
||||||
|
|
||||||
definition base_eq_base_equiv : base = base ≃ ℤ :=
|
definition base_eq_base_equiv [constructor] : base = base ≃ ℤ :=
|
||||||
circle_eq_equiv base
|
circle_eq_equiv base
|
||||||
|
|
||||||
definition decode_add (a b : ℤ) :
|
definition decode_add (a b : ℤ) :
|
||||||
|
@ -247,16 +247,26 @@ namespace circle
|
||||||
definition fg_carrier_equiv_int : π₁(S¹) ≃ ℤ :=
|
definition fg_carrier_equiv_int : π₁(S¹) ≃ ℤ :=
|
||||||
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !equiv_trunc⁻¹ᵉ
|
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !equiv_trunc⁻¹ᵉ
|
||||||
|
|
||||||
|
definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p :=
|
||||||
|
eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm])
|
||||||
|
|
||||||
definition fundamental_group_of_circle : π₁(S¹) = group_integers :=
|
definition fundamental_group_of_circle : π₁(S¹) = group_integers :=
|
||||||
begin
|
begin
|
||||||
apply (Group_eq fg_carrier_equiv_int),
|
apply (Group_eq fg_carrier_equiv_int),
|
||||||
intros g h,
|
intros g h,
|
||||||
induction g with g', induction h with h',
|
induction g with g', induction h with h',
|
||||||
-- esimp at *,
|
|
||||||
-- esimp [fg_carrier_equiv_int,equiv.trans,equiv.symm,equiv_trunc,trunc_equiv_trunc,
|
|
||||||
-- base_eq_base_equiv,circle_eq_equiv,is_equiv_tr,semigroup.to_has_mul,monoid.to_semigroup,
|
|
||||||
-- group.to_monoid,fundamental_group.mul],
|
|
||||||
apply encode_con,
|
apply encode_con,
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition eq_equiv_Z (x : S¹) : x = x ≃ ℤ :=
|
||||||
|
begin
|
||||||
|
induction x,
|
||||||
|
{ apply base_eq_base_equiv},
|
||||||
|
{ apply equiv_pathover, intro p p' q, apply pathover_of_eq,
|
||||||
|
let H := eq_of_square (square_of_pathover q),
|
||||||
|
rewrite con_comm_base at H,
|
||||||
|
let H' := cancel_left H,
|
||||||
|
induction H', reflexivity}
|
||||||
|
end
|
||||||
|
|
||||||
end circle
|
end circle
|
||||||
|
|
Loading…
Reference in a new issue