fix(frontends/lean): consistent behavior for protected declarations
see https://github.com/leanprover/lean/issues/604#issuecomment-103265608 closes #609
This commit is contained in:
parent
d8bd3c21b5
commit
e1c2340db2
34 changed files with 229 additions and 210 deletions
|
@ -39,7 +39,7 @@ namespace functor
|
|||
G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp
|
||||
... = G (F g) ∘ G (F f) : by rewrite respect_comp)
|
||||
|
||||
infixr `∘f`:60 := compose
|
||||
infixr `∘f`:60 := functor.compose
|
||||
|
||||
protected definition id [reducible] {C : Precategory} : functor C C :=
|
||||
mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp)
|
||||
|
@ -88,7 +88,7 @@ namespace functor
|
|||
apply (respect_id F) ),
|
||||
end
|
||||
|
||||
attribute preserve_iso [instance]
|
||||
attribute functor.preserve_iso [instance]
|
||||
|
||||
protected definition respect_inv (F : C ⇒ D) {a b : C} (f : hom a b)
|
||||
[H : is_iso f] [H' : is_iso (F f)] :
|
||||
|
@ -107,10 +107,10 @@ namespace functor
|
|||
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
||||
!functor_mk_eq_constant (λa b f, idp)
|
||||
|
||||
protected definition id_left (F : C ⇒ D) : id ∘f F = F :=
|
||||
protected definition id_left (F : C ⇒ D) : functor.id ∘f F = F :=
|
||||
functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp))
|
||||
|
||||
protected definition id_right (F : C ⇒ D) : F ∘f id = F :=
|
||||
protected definition id_right (F : C ⇒ D) : F ∘f functor.id = F :=
|
||||
functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp))
|
||||
|
||||
protected definition comp_id_eq_id_comp (F : C ⇒ D) : F ∘f functor.id = functor.id ∘f F :=
|
||||
|
@ -182,7 +182,7 @@ namespace functor
|
|||
: ap010 to_fun_ob (apd01111 functor.mk pF pH pid pcomp) c = ap10 pF c :=
|
||||
by cases pF; cases pH; cases pid; cases pcomp; apply idp
|
||||
|
||||
definition ap010_functor_eq {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ∼ to_fun_ob F₂)
|
||||
definition ap010_functor_eq {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ∼ to_fun_ob F₂)
|
||||
(q : (λ(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a)) ∼3 to_fun_hom F₂) (c : C) :
|
||||
ap010 to_fun_ob (functor_eq p q) c = p c :=
|
||||
begin
|
||||
|
@ -198,7 +198,7 @@ definition ap010_functor_eq {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ∼ to_fun
|
|||
!ap010_functor_eq
|
||||
|
||||
definition ap010_assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) (a : A) :
|
||||
ap010 to_fun_ob (assoc H G F) a = idp :=
|
||||
ap010 to_fun_ob (functor.assoc H G F) a = idp :=
|
||||
by apply ap010_functor_mk_eq_constant
|
||||
|
||||
definition compose_pentagon (K : D ⇒ E) (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) :
|
||||
|
|
|
@ -30,13 +30,13 @@ namespace nat_trans
|
|||
... = η b ∘ (θ b ∘ F f) : by rewrite naturality
|
||||
... = (η b ∘ θ b) ∘ F f : by rewrite assoc)
|
||||
|
||||
infixr `∘n`:60 := compose
|
||||
infixr `∘n`:60 := nat_trans.compose
|
||||
|
||||
protected definition id [reducible] {C D : Precategory} {F : functor C D} : nat_trans F F :=
|
||||
mk (λa, id) (λa b f, !id_right ⬝ !id_left⁻¹)
|
||||
|
||||
protected definition ID [reducible] {C D : Precategory} (F : functor C D) : nat_trans F F :=
|
||||
(@id C D F)
|
||||
(@nat_trans.id C D F)
|
||||
|
||||
definition nat_trans_mk_eq {η₁ η₂ : Π (a : C), hom (F a) (G a)}
|
||||
(nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f)
|
||||
|
@ -52,10 +52,10 @@ namespace nat_trans
|
|||
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
|
||||
nat_trans_eq (λa, !assoc)
|
||||
|
||||
protected definition id_left (η : F ⟹ G) : id ∘n η = η :=
|
||||
protected definition id_left (η : F ⟹ G) : nat_trans.id ∘n η = η :=
|
||||
nat_trans_eq (λa, !id_left)
|
||||
|
||||
protected definition id_right (η : F ⟹ G) : η ∘n id = η :=
|
||||
protected definition id_right (η : F ⟹ G) : η ∘n nat_trans.id = η :=
|
||||
nat_trans_eq (λa, !id_right)
|
||||
|
||||
protected definition sigma_char (F G : C ⇒ D) :
|
||||
|
@ -78,7 +78,7 @@ namespace nat_trans
|
|||
end
|
||||
|
||||
definition is_hset_nat_trans [instance] : is_hset (F ⟹ G) :=
|
||||
by apply is_trunc_is_equiv_closed; apply (equiv.to_is_equiv !sigma_char)
|
||||
by apply is_trunc_is_equiv_closed; apply (equiv.to_is_equiv !nat_trans.sigma_char)
|
||||
|
||||
definition nat_trans_functor_compose [reducible] (η : G ⟹ H) (F : E ⇒ C) : G ∘f F ⟹ H ∘f F :=
|
||||
nat_trans.mk
|
||||
|
|
|
@ -99,7 +99,7 @@ namespace circle
|
|||
|
||||
protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base)
|
||||
(Ploop : loop ▸ Pbase = Pbase) : P x :=
|
||||
rec Pbase Ploop x
|
||||
circle.rec Pbase Ploop x
|
||||
|
||||
theorem rec_loop_helper {A : Type} (P : A → Type)
|
||||
{x y : A} {p : x = y} {u : P x} {v : P y} (q : u = p⁻¹ ▸ v) :
|
||||
|
@ -110,9 +110,9 @@ namespace circle
|
|||
eq.rec_on p idp
|
||||
|
||||
theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) :
|
||||
apd (rec Pbase Ploop) loop = Ploop :=
|
||||
apd (circle.rec Pbase Ploop) loop = Ploop :=
|
||||
begin
|
||||
rewrite [↑loop,apd_con,↑rec,↑rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here
|
||||
rewrite [↑loop,apd_con,↑circle.rec,↑circle.rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here
|
||||
apply concat, apply (ap (λx, x ⬝ _)), apply con_idp, esimp,
|
||||
rewrite [rec_loop_helper,inv_con_inv_left],
|
||||
apply con_inv_cancel_left
|
||||
|
@ -120,33 +120,33 @@ namespace circle
|
|||
|
||||
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
||||
(x : circle) : P :=
|
||||
rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
|
||||
circle.rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
|
||||
|
||||
protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P)
|
||||
(Ploop : Pbase = Pbase) : P :=
|
||||
elim Pbase Ploop x
|
||||
circle.elim Pbase Ploop x
|
||||
|
||||
theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
|
||||
ap (elim Pbase Ploop) loop = Ploop :=
|
||||
ap (circle.elim Pbase Ploop) loop = Ploop :=
|
||||
begin
|
||||
apply (@cancel_left _ _ _ _ (tr_constant loop (elim Pbase Ploop base))),
|
||||
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_loop],
|
||||
apply (@cancel_left _ _ _ _ (tr_constant loop (circle.elim Pbase Ploop base))),
|
||||
rewrite [-apd_eq_tr_constant_con_ap,↑circle.elim,rec_loop],
|
||||
end
|
||||
|
||||
protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase)
|
||||
(x : circle) : Type :=
|
||||
elim Pbase (ua Ploop) x
|
||||
circle.elim Pbase (ua Ploop) x
|
||||
|
||||
protected definition elim_type_on [reducible] (x : circle) (Pbase : Type)
|
||||
(Ploop : Pbase ≃ Pbase) : Type :=
|
||||
elim_type Pbase Ploop x
|
||||
circle.elim_type Pbase Ploop x
|
||||
|
||||
theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
||||
transport (elim_type Pbase Ploop) loop = Ploop :=
|
||||
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_loop];apply cast_ua_fn
|
||||
transport (circle.elim_type Pbase Ploop) loop = Ploop :=
|
||||
by rewrite [tr_eq_cast_ap_fn,↑circle.elim_type,circle.elim_loop];apply cast_ua_fn
|
||||
|
||||
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
||||
transport (elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
|
||||
transport (circle.elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
|
||||
by rewrite [tr_inv_fn,↑to_inv]; apply inv_eq_inv; apply elim_type_loop
|
||||
end circle
|
||||
|
||||
|
@ -188,17 +188,17 @@ namespace circle
|
|||
protected definition code (x : circle) : Type₀ :=
|
||||
circle.elim_type_on x ℤ equiv_succ
|
||||
|
||||
definition transport_code_loop (a : ℤ) : transport code loop a = succ a :=
|
||||
definition transport_code_loop (a : ℤ) : transport circle.code loop a = succ a :=
|
||||
ap10 !elim_type_loop a
|
||||
|
||||
definition transport_code_loop_inv (a : ℤ)
|
||||
: transport code loop⁻¹ a = pred a :=
|
||||
: transport circle.code loop⁻¹ a = pred a :=
|
||||
ap10 !elim_type_loop_inv a
|
||||
|
||||
protected definition encode {x : circle} (p : base = x) : code x :=
|
||||
transport code p (of_num 0) -- why is the explicit coercion needed here?
|
||||
protected definition encode {x : circle} (p : base = x) : circle.code x :=
|
||||
transport circle.code p (of_num 0) -- why is the explicit coercion needed here?
|
||||
|
||||
protected definition decode {x : circle} : code x → base = x :=
|
||||
protected definition decode {x : circle} : circle.code x → base = x :=
|
||||
begin
|
||||
refine circle.rec_on x _ _,
|
||||
{ exact power loop},
|
||||
|
@ -208,30 +208,30 @@ namespace circle
|
|||
end
|
||||
|
||||
--remove this theorem after #484
|
||||
theorem encode_decode {x : circle} : Π(a : code x), encode (decode a) = a :=
|
||||
theorem encode_decode {x : circle} : Π(a : circle.code x), circle.encode (circle.decode a) = a :=
|
||||
begin
|
||||
unfold decode, refine circle.rec_on x _ _,
|
||||
unfold circle.decode, refine circle.rec_on x _ _,
|
||||
{ intro a, esimp [base,base1], --simplify after #587
|
||||
apply rec_nat_on a,
|
||||
{ exact idp},
|
||||
{ intros n p,
|
||||
apply transport (λ(y : base = base), transport code y _ = _), apply power_con,
|
||||
rewrite [▸*,con_tr, transport_code_loop, ↑[encode,code] at p, p]},
|
||||
apply transport (λ(y : base = base), transport circle.code y _ = _), apply power_con,
|
||||
rewrite [▸*,con_tr, transport_code_loop, ↑[circle.encode,circle.code] at p, p]},
|
||||
{ intros n p,
|
||||
apply transport (λ(y : base = base), transport code y _ = _),
|
||||
apply transport (λ(y : base = base), transport circle.code y _ = _),
|
||||
{ exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹},
|
||||
rewrite [▸*,@con_tr _ code,transport_code_loop_inv, ↑[encode] at p, p, -neg_succ]}},
|
||||
{ apply eq_of_homotopy, intro a, apply @is_hset.elim, esimp [code,base,base1], exact _}
|
||||
rewrite [▸*,@con_tr _ circle.code,transport_code_loop_inv, ↑[circle.encode] at p, p, -neg_succ]}},
|
||||
{ apply eq_of_homotopy, intro a, apply @is_hset.elim, esimp [circle.code,base,base1], exact _}
|
||||
--simplify after #587
|
||||
end
|
||||
|
||||
|
||||
definition circle_eq_equiv (x : circle) : (base = x) ≃ code x :=
|
||||
definition circle_eq_equiv (x : circle) : (base = x) ≃ circle.code x :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact encode},
|
||||
{ exact decode},
|
||||
{ exact encode_decode},
|
||||
{ exact circle.encode},
|
||||
{ exact circle.decode},
|
||||
{ exact circle.encode_decode},
|
||||
{ intro p, cases p, exact idp},
|
||||
end
|
||||
|
||||
|
@ -242,7 +242,7 @@ namespace circle
|
|||
base_eq_base_equiv⁻¹ a ⬝ base_eq_base_equiv⁻¹ b = base_eq_base_equiv⁻¹ (a + b) :=
|
||||
!power_con_power
|
||||
|
||||
definition encode_con (p q : base = base) : encode (p ⬝ q) = encode p + encode q :=
|
||||
definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p + circle.encode q :=
|
||||
preserve_binary_of_inv_preserve base_eq_base_equiv concat add decode_add p q
|
||||
|
||||
--the carrier of π₁(S¹) is the set-truncation of base = base.
|
||||
|
|
|
@ -37,39 +37,39 @@ namespace suspension
|
|||
|
||||
protected definition rec_on [reducible] {P : suspension A → Type} (y : suspension A)
|
||||
(PN : P !north) (PS : P !south) (Pm : Π(a : A), merid a ▸ PN = PS) : P y :=
|
||||
rec PN PS Pm y
|
||||
suspension.rec PN PS Pm y
|
||||
|
||||
theorem rec_merid {P : suspension A → Type} (PN : P !north) (PS : P !south)
|
||||
(Pm : Π(a : A), merid a ▸ PN = PS) (a : A)
|
||||
: apd (rec PN PS Pm) (merid a) = Pm a :=
|
||||
: apd (suspension.rec PN PS Pm) (merid a) = Pm a :=
|
||||
!rec_glue
|
||||
|
||||
protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
|
||||
(x : suspension A) : P :=
|
||||
rec PN PS (λa, !tr_constant ⬝ Pm a) x
|
||||
suspension.rec PN PS (λa, !tr_constant ⬝ Pm a) x
|
||||
|
||||
protected definition elim_on [reducible] {P : Type} (x : suspension A)
|
||||
(PN : P) (PS : P) (Pm : A → PN = PS) : P :=
|
||||
elim PN PS Pm x
|
||||
suspension.elim PN PS Pm x
|
||||
|
||||
theorem elim_merid {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (a : A)
|
||||
: ap (elim PN PS Pm) (merid a) = Pm a :=
|
||||
: ap (suspension.elim PN PS Pm) (merid a) = Pm a :=
|
||||
begin
|
||||
apply (@cancel_left _ _ _ _ (tr_constant (merid a) (elim PN PS Pm !north))),
|
||||
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_merid],
|
||||
apply (@cancel_left _ _ _ _ (tr_constant (merid a) (suspension.elim PN PS Pm !north))),
|
||||
rewrite [-apd_eq_tr_constant_con_ap,↑suspension.elim,rec_merid],
|
||||
end
|
||||
|
||||
protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
|
||||
(x : suspension A) : Type :=
|
||||
elim PN PS (λa, ua (Pm a)) x
|
||||
suspension.elim PN PS (λa, ua (Pm a)) x
|
||||
|
||||
protected definition elim_type_on [reducible] (x : suspension A)
|
||||
(PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type :=
|
||||
elim_type PN PS Pm x
|
||||
suspension.elim_type PN PS Pm x
|
||||
|
||||
theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
|
||||
(x : suspension A) (a : A) : transport (elim_type PN PS Pm) (merid a) = Pm a :=
|
||||
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_merid];apply cast_ua_fn
|
||||
(x : suspension A) (a : A) : transport (suspension.elim_type PN PS Pm) (merid a) = Pm a :=
|
||||
by rewrite [tr_eq_cast_ap_fn,↑suspension.elim_type,elim_merid];apply cast_ua_fn
|
||||
|
||||
end suspension
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ namespace trunc
|
|||
|
||||
protected definition elim_on {n : trunc_index} {A : Type} {P : Type} (aa : trunc n A)
|
||||
[Pt : is_trunc n P] (H : A → P) : P :=
|
||||
elim H aa
|
||||
trunc.elim H aa
|
||||
|
||||
/-
|
||||
there are no theorems to eliminate to the universe here,
|
||||
|
|
|
@ -22,34 +22,32 @@ namespace type_quotient
|
|||
|
||||
protected definition elim_on [reducible] {P : Type} (x : type_quotient R)
|
||||
(Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P :=
|
||||
elim Pc Pp x
|
||||
type_quotient.elim Pc Pp x
|
||||
|
||||
theorem elim_eq_of_rel {P : Type} (Pc : A → P)
|
||||
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a')
|
||||
: ap (elim Pc Pp) (eq_of_rel R H) = Pp H :=
|
||||
: ap (type_quotient.elim Pc Pp) (eq_of_rel R H) = Pp H :=
|
||||
begin
|
||||
apply (@cancel_left _ _ _ _ (tr_constant (eq_of_rel R H) (elim Pc Pp (class_of R a)))),
|
||||
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_eq_of_rel],
|
||||
apply (@cancel_left _ _ _ _ (tr_constant (eq_of_rel R H) (type_quotient.elim Pc Pp (class_of R a)))),
|
||||
rewrite [-apd_eq_tr_constant_con_ap,↑type_quotient.elim,rec_eq_of_rel],
|
||||
end
|
||||
|
||||
protected definition elim_type (Pc : A → Type)
|
||||
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : type_quotient R → Type :=
|
||||
elim Pc (λa a' H, ua (Pp H))
|
||||
type_quotient.elim Pc (λa a' H, ua (Pp H))
|
||||
|
||||
protected definition elim_type_on [reducible] (x : type_quotient R) (Pc : A → Type)
|
||||
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : Type :=
|
||||
elim_type Pc Pp x
|
||||
type_quotient.elim_type Pc Pp x
|
||||
|
||||
theorem elim_type_eq_of_rel (Pc : A → Type)
|
||||
(Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a')
|
||||
: transport (elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) :=
|
||||
by rewrite [tr_eq_cast_ap_fn, ↑elim_type, elim_eq_of_rel];apply cast_ua_fn
|
||||
: transport (type_quotient.elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) :=
|
||||
by rewrite [tr_eq_cast_ap_fn, ↑type_quotient.elim_type, elim_eq_of_rel];apply cast_ua_fn
|
||||
|
||||
definition elim_type_uncurried (H : Σ(Pc : A → Type), Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a')
|
||||
: type_quotient R → Type :=
|
||||
elim_type H.1 H.2
|
||||
|
||||
|
||||
type_quotient.elim_type H.1 H.2
|
||||
end type_quotient
|
||||
|
||||
attribute type_quotient.elim [unfold-c 6]
|
||||
|
|
|
@ -62,7 +62,7 @@ namespace type_quotient
|
|||
protected definition rec_on [reducible] {A : Type} {R : A → A → Type} {P : type_quotient R → Type}
|
||||
(x : type_quotient R) (Pc : Π(a : A), P (class_of R a))
|
||||
(Pp : Π⦃a a' : A⦄ (H : R a a'), eq_of_rel R H ▸ Pc a = Pc a') : P x :=
|
||||
rec Pc Pp x
|
||||
type_quotient.rec Pc Pp x
|
||||
|
||||
end type_quotient
|
||||
|
||||
|
|
|
@ -200,13 +200,13 @@ protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A
|
|||
inhabited.rec H2 H1
|
||||
|
||||
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
|
||||
destruct H (λb, mk (λa, b))
|
||||
inhabited.destruct H (λb, mk (λa, b))
|
||||
|
||||
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
|
||||
inhabited (Πx, B x) :=
|
||||
mk (λa, destruct (H a) (λb, b))
|
||||
mk (λa, inhabited.destruct (H a) (λb, b))
|
||||
|
||||
definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a)
|
||||
definition default (A : Type) [H : inhabited A] : A := inhabited.destruct H (take a, a)
|
||||
|
||||
end inhabited
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ namespace Wtype
|
|||
protected definition pr1 [unfold-c 3] (w : W(a : A), B a) : A :=
|
||||
by cases w with a f; exact a
|
||||
|
||||
protected definition pr2 [unfold-c 3] (w : W(a : A), B a) : B (pr1 w) → W(a : A), B a :=
|
||||
protected definition pr2 [unfold-c 3] (w : W(a : A), B a) : B (Wtype.pr1 w) → W(a : A), B a :=
|
||||
by cases w with a f; exact f
|
||||
|
||||
namespace ops
|
||||
|
@ -40,13 +40,13 @@ namespace Wtype
|
|||
definition sup_eq_sup (p : a = a') (q : p ▸ f = f') : ⟨a, f⟩ = ⟨a', f'⟩ :=
|
||||
by cases p; cases q; exact idp
|
||||
|
||||
protected definition Wtype_eq (p : w.1 = w'.1) (q : p ▸ w.2 = w'.2) : w = w' :=
|
||||
definition Wtype_eq (p : w.1 = w'.1) (q : p ▸ w.2 = w'.2) : w = w' :=
|
||||
by cases w; cases w';exact (sup_eq_sup p q)
|
||||
|
||||
protected definition Wtype_eq_pr1 (p : w = w') : w.1 = w'.1 :=
|
||||
definition Wtype_eq_pr1 (p : w = w') : w.1 = w'.1 :=
|
||||
by cases p;exact idp
|
||||
|
||||
protected definition Wtype_eq_pr2 (p : w = w') : Wtype_eq_pr1 p ▸ w.2 = w'.2 :=
|
||||
definition Wtype_eq_pr2 (p : w = w') : Wtype_eq_pr1 p ▸ w.2 = w'.2 :=
|
||||
by cases p;exact idp
|
||||
|
||||
namespace ops
|
||||
|
|
|
@ -76,7 +76,7 @@ namespace is_equiv
|
|||
local attribute is_contr_right_coherence [instance] [priority 1600]
|
||||
|
||||
theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) :=
|
||||
is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !sigma_char'))
|
||||
is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !is_equiv.sigma_char'))
|
||||
|
||||
definition inv_eq_inv {A B : Type} {f f' : A → B} {Hf : is_equiv f} {Hf' : is_equiv f'}
|
||||
(p : f = f') : f⁻¹ = f'⁻¹ :=
|
||||
|
|
|
@ -171,10 +171,10 @@ have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
|||
... = pr2 p + pr1 r + pr2 q : by exact sorry,
|
||||
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
||||
|
||||
protected definition int_equiv_int_equiv : is_equivalence int_equiv :=
|
||||
definition int_equiv_int_equiv : is_equivalence int_equiv :=
|
||||
is_equivalence.mk @int_equiv.refl @int_equiv.symm @int_equiv.trans
|
||||
|
||||
protected definition int_equiv_cases {p q : ℕ × ℕ} (H : int_equiv p q) :
|
||||
definition int_equiv_cases {p q : ℕ × ℕ} (H : int_equiv p q) :
|
||||
(pr1 p ≥ pr2 p × pr1 q ≥ pr2 q) ⊎ (pr1 p < pr2 p × pr1 q < pr2 q) :=
|
||||
sum.rec_on (@le_or_gt (pr2 p) (pr1 p))
|
||||
(assume H1: pr1 p ≥ pr2 p,
|
||||
|
@ -184,7 +184,7 @@ sum.rec_on (@le_or_gt (pr2 p) (pr1 p))
|
|||
have H2 : pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right H1 (pr2 q),
|
||||
sum.inr (pair H1 (lt_of_add_lt_add_left H2)))
|
||||
|
||||
protected definition int_equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ int_equiv.refl
|
||||
definition int_equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ int_equiv.refl
|
||||
|
||||
/- the representation and abstraction functions -/
|
||||
|
||||
|
|
|
@ -328,9 +328,9 @@ H1 !lt_succ_self
|
|||
|
||||
protected theorem case_strong_induction_on {P : nat → Type} (a : nat) (H0 : P 0)
|
||||
(Hind : Π(n : nat), (Πm, m ≤ n → P m) → P (succ n)) : P a :=
|
||||
strong_induction_on a (
|
||||
take n,
|
||||
show (Πm, m < n → P m) → P n, from
|
||||
nat.strong_induction_on a
|
||||
(take n,
|
||||
show (Π m, m < n → P m) → P n, from
|
||||
nat.cases_on n
|
||||
(assume H : (Πm, m < 0 → P m), show P 0, from H0)
|
||||
(take n,
|
||||
|
|
|
@ -27,8 +27,8 @@ namespace prod
|
|||
begin
|
||||
cases u with a₁ b₁,
|
||||
cases v with a₂ b₂,
|
||||
apply transport _ (eta (a₁, b₁)),
|
||||
apply transport _ (eta (a₂, b₂)),
|
||||
apply transport _ (prod.eta (a₁, b₁)),
|
||||
apply transport _ (prod.eta (a₂, b₂)),
|
||||
apply pair_eq H₁ H₂,
|
||||
end
|
||||
|
||||
|
|
|
@ -273,7 +273,7 @@ namespace sigma
|
|||
definition sigma_assoc_equiv (C : (Σa, B a) → Type) : (Σa b, C ⟨a, b⟩) ≃ (Σu, C u) :=
|
||||
equiv.mk _ (adjointify
|
||||
(λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
|
||||
(λuc, ⟨uc.1.1, uc.1.2, !eta⁻¹ ▸ uc.2⟩)
|
||||
(λuc, ⟨uc.1.1, uc.1.2, !sigma.eta⁻¹ ▸ uc.2⟩)
|
||||
begin intro uc, cases uc with u c, cases u, reflexivity end
|
||||
begin intro av, cases av with a v, cases v, reflexivity end)
|
||||
|
||||
|
@ -331,18 +331,18 @@ namespace sigma
|
|||
⟨fg.1 a, fg.2 a⟩
|
||||
|
||||
protected definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b :=
|
||||
coind_uncurried ⟨f, g⟩ a
|
||||
sigma.coind_uncurried ⟨f, g⟩ a
|
||||
|
||||
--is the instance below dangerous?
|
||||
--in Coq this can be done without function extensionality
|
||||
definition is_equiv_coind [instance] (C : Πa, B a → Type)
|
||||
: is_equiv (@coind_uncurried _ _ C) :=
|
||||
: is_equiv (@sigma.coind_uncurried _ _ C) :=
|
||||
adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩)
|
||||
(λ h, proof eq_of_homotopy (λu, !eta) qed)
|
||||
(λ h, proof eq_of_homotopy (λu, !sigma.eta) qed)
|
||||
(λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed))
|
||||
|
||||
definition sigma_pi_equiv_pi_sigma : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) :=
|
||||
equiv.mk coind_uncurried _
|
||||
equiv.mk sigma.coind_uncurried _
|
||||
end
|
||||
|
||||
/- ** Subtypes (sigma types whose second components are hprops) -/
|
||||
|
|
|
@ -148,27 +148,27 @@ namespace trunc
|
|||
protected definition code (n : trunc_index) (aa aa' : trunc n.+1 A) : n-Type :=
|
||||
trunc.rec_on aa (λa, trunc.rec_on aa' (λa', trunctype.mk' n (trunc n (a = a'))))
|
||||
|
||||
protected definition encode (n : trunc_index) (aa aa' : trunc n.+1 A) : aa = aa' → code n aa aa' :=
|
||||
protected definition encode (n : trunc_index) (aa aa' : trunc n.+1 A) : aa = aa' → trunc.code n aa aa' :=
|
||||
begin
|
||||
intro p, cases p, apply (trunc.rec_on aa),
|
||||
intro a, esimp [code,trunc.rec_on], exact (tr idp)
|
||||
intro a, esimp [trunc.code,trunc.rec_on], exact (tr idp)
|
||||
end
|
||||
|
||||
protected definition decode (n : trunc_index) (aa aa' : trunc n.+1 A) : code n aa aa' → aa = aa' :=
|
||||
protected definition decode (n : trunc_index) (aa aa' : trunc n.+1 A) : trunc.code n aa aa' → aa = aa' :=
|
||||
begin
|
||||
eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
|
||||
intro a a' x, esimp [code, trunc.rec_on] at x,
|
||||
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
|
||||
apply (trunc.rec_on x), intro p, exact (ap tr p)
|
||||
end
|
||||
|
||||
definition trunc_eq_equiv (n : trunc_index) (aa aa' : trunc n.+1 A)
|
||||
: aa = aa' ≃ code n aa aa' :=
|
||||
: aa = aa' ≃ trunc.code n aa aa' :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ apply encode},
|
||||
{ apply decode},
|
||||
{ apply trunc.encode},
|
||||
{ apply trunc.decode},
|
||||
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
|
||||
intro a a' x, esimp [code, trunc.rec_on] at x,
|
||||
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
|
||||
apply (trunc.rec_on x), intro p, cases p, exact idp},
|
||||
{ intro p, cases p, apply (trunc.rec_on aa), intro a, exact idp},
|
||||
end
|
||||
|
|
|
@ -176,32 +176,32 @@ namespace category
|
|||
open sigma function
|
||||
variables {ob : Type} {C : category ob} {c : ob}
|
||||
protected definition slice_obs (C : category ob) (c : ob) := Σ(b : ob), hom b c
|
||||
variables {a b : slice_obs C c}
|
||||
protected definition to_ob (a : slice_obs C c) : ob := sigma.pr1 a
|
||||
protected definition to_ob_def (a : slice_obs C c) : to_ob a = sigma.pr1 a := rfl
|
||||
protected definition ob_hom (a : slice_obs C c) : hom (to_ob a) c := sigma.pr2 a
|
||||
variables {a b : slice.slice_obs C c}
|
||||
protected definition to_ob (a : slice.slice_obs C c) : ob := sigma.pr1 a
|
||||
protected definition to_ob_def (a : slice.slice_obs C c) : slice.to_ob a = sigma.pr1 a := rfl
|
||||
protected definition ob_hom (a : slice.slice_obs C c) : hom (slice.to_ob a) c := sigma.pr2 a
|
||||
-- protected theorem slice_obs_equal (H₁ : to_ob a = to_ob b)
|
||||
-- (H₂ : eq.drec_on H₁ (ob_hom a) = ob_hom b) : a = b :=
|
||||
-- sigma.equal H₁ H₂
|
||||
|
||||
|
||||
protected definition slice_hom (a b : slice_obs C c) : Type :=
|
||||
Σ(g : hom (to_ob a) (to_ob b)), ob_hom b ∘ g = ob_hom a
|
||||
protected definition slice_hom (a b : slice.slice_obs C c) : Type :=
|
||||
Σ(g : hom (slice.to_ob a) (slice.to_ob b)), slice.ob_hom b ∘ g = slice.ob_hom a
|
||||
|
||||
protected definition hom_hom (f : slice_hom a b) : hom (to_ob a) (to_ob b) := sigma.pr1 f
|
||||
protected definition commute (f : slice_hom a b) : ob_hom b ∘ (hom_hom f) = ob_hom a := sigma.pr2 f
|
||||
protected definition hom_hom (f : slice.slice_hom a b) : hom (slice.to_ob a) (slice.to_ob b) := sigma.pr1 f
|
||||
protected definition commute (f : slice.slice_hom a b) : slice.ob_hom b ∘ (slice.hom_hom f) = slice.ob_hom a := sigma.pr2 f
|
||||
-- protected theorem slice_hom_equal (f g : slice_hom a b) (H : hom_hom f = hom_hom g) : f = g :=
|
||||
-- sigma.equal H !proof_irrel
|
||||
|
||||
definition slice_category (C : category ob) (c : ob) : category (slice_obs C c) :=
|
||||
mk (λa b, slice_hom a b)
|
||||
(λ a b c g f, sigma.mk (hom_hom g ∘ hom_hom f)
|
||||
(show ob_hom c ∘ (hom_hom g ∘ hom_hom f) = ob_hom a,
|
||||
definition slice_category (C : category ob) (c : ob) : category (slice.slice_obs C c) :=
|
||||
mk (λa b, slice.slice_hom a b)
|
||||
(λ a b c g f, sigma.mk (slice.hom_hom g ∘ slice.hom_hom f)
|
||||
(show slice.ob_hom c ∘ (slice.hom_hom g ∘ slice.hom_hom f) = slice.ob_hom a,
|
||||
proof
|
||||
calc
|
||||
ob_hom c ∘ (hom_hom g ∘ hom_hom f) = (ob_hom c ∘ hom_hom g) ∘ hom_hom f : !assoc
|
||||
... = ob_hom b ∘ hom_hom f : {commute g}
|
||||
... = ob_hom a : {commute f}
|
||||
slice.ob_hom c ∘ (slice.hom_hom g ∘ slice.hom_hom f) = (slice.ob_hom c ∘ slice.hom_hom g) ∘ slice.hom_hom f : !assoc
|
||||
... = slice.ob_hom b ∘ slice.hom_hom f : {slice.commute g}
|
||||
... = slice.ob_hom a : {slice.commute f}
|
||||
qed))
|
||||
(λ a, sigma.mk id !id_right)
|
||||
(λ a b c d h g f, dpair_eq !assoc !proof_irrel)
|
||||
|
@ -231,20 +231,20 @@ namespace category
|
|||
attribute slice_category [instance]
|
||||
variables {D : Category}
|
||||
definition forgetful (x : D) : (Slice_category D x) ⇒ D :=
|
||||
functor.mk (λ a, to_ob a)
|
||||
(λ a b f, hom_hom f)
|
||||
functor.mk (λ a, slice.to_ob a)
|
||||
(λ a b f, slice.hom_hom f)
|
||||
(λ a, rfl)
|
||||
(λ a b c g f, rfl)
|
||||
|
||||
definition postcomposition_functor {x y : D} (h : x ⟶ y)
|
||||
: Slice_category D x ⇒ Slice_category D y :=
|
||||
functor.mk
|
||||
(λ a, sigma.mk (to_ob a) (h ∘ ob_hom a))
|
||||
(λ a, sigma.mk (slice.to_ob a) (h ∘ slice.ob_hom a))
|
||||
(λ a b f,
|
||||
⟨hom_hom f,
|
||||
⟨slice.hom_hom f,
|
||||
calc
|
||||
(h ∘ ob_hom b) ∘ hom_hom f = h ∘ (ob_hom b ∘ hom_hom f) : by rewrite assoc
|
||||
... = h ∘ ob_hom a : by rewrite commute⟩)
|
||||
(h ∘ slice.ob_hom b) ∘ slice.hom_hom f = h ∘ (slice.ob_hom b ∘ slice.hom_hom f) : by rewrite assoc
|
||||
... = h ∘ slice.ob_hom a : by rewrite slice.commute⟩)
|
||||
(λ a, rfl)
|
||||
(λ a b c g f, dpair_eq rfl !proof_irrel)
|
||||
|
||||
|
@ -330,30 +330,32 @@ namespace category
|
|||
-- make these definitions private?
|
||||
variables {ob : Type} {C : category ob}
|
||||
protected definition arrow_obs (ob : Type) (C : category ob) := Σ(a b : ob), hom a b
|
||||
variables {a b : arrow_obs ob C}
|
||||
protected definition src (a : arrow_obs ob C) : ob := sigma.pr1 a
|
||||
protected definition dst (a : arrow_obs ob C) : ob := sigma.pr2' a
|
||||
protected definition to_hom (a : arrow_obs ob C) : hom (src a) (dst a) := sigma.pr3 a
|
||||
variables {a b : category.arrow_obs ob C}
|
||||
protected definition src (a : category.arrow_obs ob C) : ob := sigma.pr1 a
|
||||
protected definition dst (a : category.arrow_obs ob C) : ob := sigma.pr2' a
|
||||
protected definition to_hom (a : category.arrow_obs ob C) : hom (category.src a) (category.dst a) := sigma.pr3 a
|
||||
|
||||
protected definition arrow_hom (a b : arrow_obs ob C) : Type :=
|
||||
Σ (g : hom (src a) (src b)) (h : hom (dst a) (dst b)), to_hom b ∘ g = h ∘ to_hom a
|
||||
protected definition arrow_hom (a b : category.arrow_obs ob C) : Type :=
|
||||
Σ (g : hom (category.src a) (category.src b)) (h : hom (category.dst a) (category.dst b)),
|
||||
category.to_hom b ∘ g = h ∘ category.to_hom a
|
||||
|
||||
protected definition hom_src (m : arrow_hom a b) : hom (src a) (src b) := sigma.pr1 m
|
||||
protected definition hom_dst (m : arrow_hom a b) : hom (dst a) (dst b) := sigma.pr2' m
|
||||
protected definition commute (m : arrow_hom a b) : to_hom b ∘ (hom_src m) = (hom_dst m) ∘ to_hom a
|
||||
protected definition hom_src (m : category.arrow_hom a b) : hom (category.src a) (category.src b) := sigma.pr1 m
|
||||
protected definition hom_dst (m : category.arrow_hom a b) : hom (category.dst a) (category.dst b) := sigma.pr2' m
|
||||
protected definition commute (m : category.arrow_hom a b) :
|
||||
category.to_hom b ∘ (category.hom_src m) = (category.hom_dst m) ∘ category.to_hom a
|
||||
:= sigma.pr3 m
|
||||
|
||||
definition arrow (ob : Type) (C : category ob) : category (arrow_obs ob C) :=
|
||||
mk (λa b, arrow_hom a b)
|
||||
(λ a b c g f, sigma.mk (hom_src g ∘ hom_src f) (sigma.mk (hom_dst g ∘ hom_dst f)
|
||||
(show to_hom c ∘ (hom_src g ∘ hom_src f) = (hom_dst g ∘ hom_dst f) ∘ to_hom a,
|
||||
definition arrow (ob : Type) (C : category ob) : category (category.arrow_obs ob C) :=
|
||||
mk (λa b, category.arrow_hom a b)
|
||||
(λ a b c g f, sigma.mk (category.hom_src g ∘ category.hom_src f) (sigma.mk (category.hom_dst g ∘ category.hom_dst f)
|
||||
(show category.to_hom c ∘ (category.hom_src g ∘ category.hom_src f) = (category.hom_dst g ∘ category.hom_dst f) ∘ category.to_hom a,
|
||||
proof
|
||||
calc
|
||||
to_hom c ∘ (hom_src g ∘ hom_src f) = (to_hom c ∘ hom_src g) ∘ hom_src f : by rewrite assoc
|
||||
... = (hom_dst g ∘ to_hom b) ∘ hom_src f : by rewrite commute
|
||||
... = hom_dst g ∘ (to_hom b ∘ hom_src f) : by rewrite assoc
|
||||
... = hom_dst g ∘ (hom_dst f ∘ to_hom a) : by rewrite commute
|
||||
... = (hom_dst g ∘ hom_dst f) ∘ to_hom a : by rewrite assoc
|
||||
category.to_hom c ∘ (category.hom_src g ∘ category.hom_src f) = (category.to_hom c ∘ category.hom_src g) ∘ category.hom_src f : by rewrite assoc
|
||||
... = (category.hom_dst g ∘ category.to_hom b) ∘ category.hom_src f : by rewrite category.commute
|
||||
... = category.hom_dst g ∘ (category.to_hom b ∘ category.hom_src f) : by rewrite assoc
|
||||
... = category.hom_dst g ∘ (category.hom_dst f ∘ category.to_hom a) : by rewrite category.commute
|
||||
... = (category.hom_dst g ∘ category.hom_dst f) ∘ category.to_hom a : by rewrite assoc
|
||||
qed)
|
||||
))
|
||||
(λ a, sigma.mk id (sigma.mk id (!id_right ⬝ (symm !id_left))))
|
||||
|
|
|
@ -39,7 +39,7 @@ namespace functor
|
|||
G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f
|
||||
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f) qed)
|
||||
|
||||
infixr `∘f`:60 := compose
|
||||
infixr `∘f`:60 := functor.compose
|
||||
|
||||
protected theorem assoc (H : functor C D) (G : functor B C) (F : functor A B) :
|
||||
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
||||
|
@ -47,11 +47,11 @@ namespace functor
|
|||
|
||||
protected definition id [reducible] {C : Category} : functor C C :=
|
||||
mk (λa, a) (λ a b f, f) (λ a, rfl) (λ a b c f g, rfl)
|
||||
protected definition ID [reducible] (C : Category) : functor C C := @id C
|
||||
protected definition ID [reducible] (C : Category) : functor C C := @functor.id C
|
||||
|
||||
protected theorem id_left (F : functor C D) : (@id D) ∘f F = F :=
|
||||
protected theorem id_left (F : functor C D) : (@functor.id D) ∘f F = F :=
|
||||
functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F
|
||||
protected theorem id_right (F : functor C D) : F ∘f (@id C) = F :=
|
||||
protected theorem id_right (F : functor C D) : F ∘f (@functor.id C) = F :=
|
||||
functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F
|
||||
|
||||
end functor
|
||||
|
|
|
@ -36,7 +36,7 @@ namespace natural_transformation
|
|||
... = (η b ∘ θ b) ∘ F f : assoc)
|
||||
--congr_arg (λx, η b ∘ x) (naturality θ f) -- this needed to be explicit for some reason (on Oct 24)
|
||||
|
||||
infixr `∘n`:60 := compose
|
||||
infixr `∘n`:60 := natural_transformation.compose
|
||||
protected theorem assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) :
|
||||
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
|
||||
dcongr_arg2 mk (funext (take x, !assoc)) !proof_irrel
|
||||
|
|
|
@ -12,7 +12,7 @@ namespace empty
|
|||
empty.rec (λe, A) H
|
||||
|
||||
protected theorem subsingleton [instance] : subsingleton empty :=
|
||||
subsingleton.intro (λ a b, !elim a)
|
||||
subsingleton.intro (λ a b, !empty.elim a)
|
||||
end empty
|
||||
|
||||
protected definition empty.has_decidable_eq [instance] : decidable_eq empty :=
|
||||
|
|
|
@ -223,7 +223,7 @@ protected theorem induction_on {P : finset A → Prop} (s : finset A)
|
|||
(H1 : P empty)
|
||||
(H2 : ∀⦃s : finset A⦄, ∀{a : A}, a ∉ s → P s → P (insert a s)) :
|
||||
P s :=
|
||||
induction H1 H2 s
|
||||
finset.induction H1 H2 s
|
||||
end insert
|
||||
|
||||
/- erase -/
|
||||
|
|
|
@ -181,10 +181,10 @@ have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
|||
... = pr2 p + pr1 r + pr2 q : by simp,
|
||||
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
||||
|
||||
protected theorem equiv_equiv : is_equivalence equiv :=
|
||||
protected theorem equiv_equiv : is_equivalence int.equiv :=
|
||||
is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
|
||||
|
||||
protected theorem equiv_cases {p q : ℕ × ℕ} (H : equiv p q) :
|
||||
protected theorem equiv_cases {p q : ℕ × ℕ} (H : int.equiv p q) :
|
||||
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) ∨ (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
|
||||
or.elim (@le_or_gt (pr2 p) (pr1 p))
|
||||
(assume H1: pr1 p ≥ pr2 p,
|
||||
|
@ -232,7 +232,7 @@ theorem repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p :=
|
|||
!prod.eta ▸ !repr_sub_nat_nat
|
||||
|
||||
theorem abstr_eq {p q : ℕ × ℕ} (Hequiv : p ≡ q) : abstr p = abstr q :=
|
||||
or.elim (equiv_cases Hequiv)
|
||||
or.elim (int.equiv_cases Hequiv)
|
||||
(assume H2,
|
||||
have H3 : pr1 p ≥ pr2 p, from and.elim_left H2,
|
||||
have H4 : pr1 q ≥ pr2 q, from and.elim_right H2,
|
||||
|
@ -264,9 +264,9 @@ or.elim (equiv_cases Hequiv)
|
|||
|
||||
theorem equiv_iff (p q : ℕ × ℕ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) :=
|
||||
iff.intro
|
||||
(assume H : equiv p q,
|
||||
(assume H : int.equiv p q,
|
||||
and.intro !equiv.refl (and.intro !equiv.refl (abstr_eq H)))
|
||||
(assume H : equiv p p ∧ equiv q q ∧ abstr p = abstr q,
|
||||
(assume H : int.equiv p p ∧ int.equiv q q ∧ abstr p = abstr q,
|
||||
have H1 : abstr p = abstr q, from and.elim_right (and.elim_right H),
|
||||
equiv.trans (H1 ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
|
||||
|
||||
|
@ -335,7 +335,7 @@ int.cases_on a
|
|||
int.cases_on b
|
||||
(take n, !equiv.refl)
|
||||
(take n',
|
||||
have H1 : equiv (repr (add (of_nat m) (neg_succ_of_nat n'))) (m, succ n'),
|
||||
have H1 : int.equiv (repr (add (of_nat m) (neg_succ_of_nat n'))) (m, succ n'),
|
||||
from !repr_sub_nat_nat,
|
||||
have H2 : padd (repr (of_nat m)) (repr (neg_succ_of_nat n')) = (m, 0 + succ n'),
|
||||
from rfl,
|
||||
|
@ -343,7 +343,7 @@ int.cases_on a
|
|||
(take m',
|
||||
int.cases_on b
|
||||
(take n,
|
||||
have H1 : equiv (repr (add (neg_succ_of_nat m') (of_nat n))) (n, succ m'),
|
||||
have H1 : int.equiv (repr (add (neg_succ_of_nat m') (of_nat n))) (n, succ m'),
|
||||
from !repr_sub_nat_nat,
|
||||
have H2 : padd (repr (neg_succ_of_nat m')) (repr (of_nat n)) = (0 + n, succ m'),
|
||||
from rfl,
|
||||
|
@ -566,7 +566,7 @@ eq_of_repr_equiv_repr
|
|||
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
|
||||
|
||||
theorem mul_one (a : ℤ) : a * 1 = a :=
|
||||
eq_of_repr_equiv_repr (equiv_of_eq
|
||||
eq_of_repr_equiv_repr (int.equiv_of_eq
|
||||
((calc
|
||||
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
|
||||
... = (pr1 (repr a), pr2 (repr a)) : by simp
|
||||
|
|
|
@ -307,7 +307,7 @@ section migrate_algebra
|
|||
mul_zero := mul_zero,
|
||||
mul_comm := mul.comm⦄
|
||||
|
||||
local attribute comm_semiring [instance]
|
||||
local attribute nat.comm_semiring [instance]
|
||||
definition dvd (a b : ℕ) : Prop := algebra.dvd a b
|
||||
notation a ∣ b := dvd a b
|
||||
|
||||
|
|
|
@ -104,6 +104,6 @@ end find_x
|
|||
protected definition choose {p : nat → Prop} [d : decidable_pred p] : (∃ x, p x) → nat :=
|
||||
assume h, elt_of (find_x h)
|
||||
|
||||
protected theorem choose_spec {p : nat → Prop} [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
|
||||
protected theorem choose_spec {p : nat → Prop} [d : decidable_pred p] (ex : ∃ x, p x) : p (nat.choose ex) :=
|
||||
has_property (find_x ex)
|
||||
end nat
|
||||
|
|
|
@ -326,9 +326,9 @@ H1 !lt_succ_self
|
|||
|
||||
protected theorem case_strong_induction_on {P : nat → Prop} (a : nat) (H0 : P 0)
|
||||
(Hind : ∀(n : nat), (∀m, m ≤ n → P m) → P (succ n)) : P a :=
|
||||
strong_induction_on a (
|
||||
take n,
|
||||
show (∀m, m < n → P m) → P n, from
|
||||
nat.strong_induction_on a
|
||||
(take n,
|
||||
show (∀ m, m < n → P m) → P n, from
|
||||
nat.cases_on n
|
||||
(assume H : (∀m, m < 0 → P m), show P 0, from H0)
|
||||
(take n,
|
||||
|
|
|
@ -71,15 +71,15 @@ protected definition inverse (f : map a b) {dflt : X} (dflta : dflt ∈ a) :=
|
|||
map.mk (inv_fun f a dflt) (@maps_to_inv_fun _ _ _ _ b _ dflta)
|
||||
|
||||
theorem left_inverse_inverse {f : map a b} {dflt : X} (dflta : dflt ∈ a) (H : map.injective f) :
|
||||
map.left_inverse (inverse f dflta) f :=
|
||||
map.left_inverse (map.inverse f dflta) f :=
|
||||
left_inv_on_inv_fun_of_inj_on dflt H
|
||||
|
||||
theorem right_inverse_inverse {f : map a b} {dflt : X} (dflta : dflt ∈ a) (H : map.surjective f) :
|
||||
map.right_inverse (inverse f dflta) f :=
|
||||
map.right_inverse (map.inverse f dflta) f :=
|
||||
right_inv_on_inv_fun_of_surj_on dflt H
|
||||
|
||||
theorem is_inverse_inverse {f : map a b} {dflt : X} (dflta : dflt ∈ a) (H : map.bijective f) :
|
||||
map.is_inverse (inverse f dflta) f :=
|
||||
map.is_inverse (map.inverse f dflta) f :=
|
||||
and.intro
|
||||
(left_inverse_inverse dflta (and.left H))
|
||||
(right_inverse_inverse dflta (and.right H))
|
||||
|
|
|
@ -38,57 +38,57 @@ assume H₁ : f₁ ~ f₂, assume H₂ : f₂ ~ f₃,
|
|||
take x, assume Ha : x ∈ a, eq.trans (H₁ Ha) (H₂ Ha)
|
||||
|
||||
protected theorem equiv.is_equivalence {X Y : Type} (a : set X) (b : set Y) :
|
||||
equivalence (@equiv X Y a b) :=
|
||||
mk_equivalence (@equiv X Y a b) (@equiv.refl X Y a b) (@equiv.symm X Y a b) (@equiv.trans X Y a b)
|
||||
equivalence (@map.equiv X Y a b) :=
|
||||
mk_equivalence (@map.equiv X Y a b) (@equiv.refl X Y a b) (@equiv.symm X Y a b) (@equiv.trans X Y a b)
|
||||
|
||||
/- compose -/
|
||||
|
||||
protected definition compose (g : map b c) (f : map a b) : map a c :=
|
||||
map.mk (#function g ∘ f) (maps_to_compose (mapsto g) (mapsto f))
|
||||
|
||||
notation g ∘ f := compose g f
|
||||
notation g ∘ f := map.compose g f
|
||||
|
||||
/- range -/
|
||||
|
||||
protected definition range (f : map a b) : set Y := image f a
|
||||
|
||||
theorem range_eq_range_of_equiv {f1 f2 : map a b} (H : f1 ~ f2) : range f1 = range f2 :=
|
||||
theorem range_eq_range_of_equiv {f1 f2 : map a b} (H : f1 ~ f2) : map.range f1 = map.range f2 :=
|
||||
image_eq_image_of_eq_on H
|
||||
|
||||
/- injective -/
|
||||
|
||||
protected definition injective (f : map a b) : Prop := inj_on f a
|
||||
|
||||
theorem injective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : injective f1) :
|
||||
injective f2 :=
|
||||
theorem injective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : map.injective f1) :
|
||||
map.injective f2 :=
|
||||
inj_on_of_eq_on H1 H2
|
||||
|
||||
theorem injective_compose {g : map b c} {f : map a b} (Hg : injective g) (Hf: injective f) :
|
||||
injective (g ∘ f) :=
|
||||
theorem injective_compose {g : map b c} {f : map a b} (Hg : map.injective g) (Hf: map.injective f) :
|
||||
map.injective (g ∘ f) :=
|
||||
inj_on_compose (mapsto f) Hg Hf
|
||||
|
||||
/- surjective -/
|
||||
|
||||
protected definition surjective (f : map a b) : Prop := surj_on f a b
|
||||
|
||||
theorem surjective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : surjective f1) :
|
||||
surjective f2 :=
|
||||
theorem surjective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : map.surjective f1) :
|
||||
map.surjective f2 :=
|
||||
surj_on_of_eq_on H1 H2
|
||||
|
||||
theorem surjective_compose {g : map b c} {f : map a b} (Hg : surjective g) (Hf: surjective f) :
|
||||
surjective (g ∘ f) :=
|
||||
theorem surjective_compose {g : map b c} {f : map a b} (Hg : map.surjective g) (Hf: map.surjective f) :
|
||||
map.surjective (g ∘ f) :=
|
||||
surj_on_compose Hg Hf
|
||||
|
||||
/- bijective -/
|
||||
|
||||
protected definition bijective (f : map a b) : Prop := injective f ∧ surjective f
|
||||
protected definition bijective (f : map a b) : Prop := map.injective f ∧ map.surjective f
|
||||
|
||||
theorem bijective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : bijective f1) :
|
||||
bijective f2 :=
|
||||
theorem bijective_of_equiv {f1 f2 : map a b} (H1 : f1 ~ f2) (H2 : map.bijective f1) :
|
||||
map.bijective f2 :=
|
||||
and.intro (injective_of_equiv H1 (and.left H2)) (surjective_of_equiv H1 (and.right H2))
|
||||
|
||||
theorem bijective_compose {g : map b c} {f : map a b} (Hg : bijective g) (Hf: bijective f) :
|
||||
bijective (g ∘ f) :=
|
||||
theorem bijective_compose {g : map b c} {f : map a b} (Hg : map.bijective g) (Hf: map.bijective f) :
|
||||
map.bijective (g ∘ f) :=
|
||||
obtain Hg₁ Hg₂, from Hg,
|
||||
obtain Hf₁ Hf₂, from Hf,
|
||||
and.intro (injective_compose Hg₁ Hf₁) (surjective_compose Hg₂ Hf₂)
|
||||
|
@ -99,53 +99,53 @@ and.intro (injective_compose Hg₁ Hf₁) (surjective_compose Hg₂ Hf₂)
|
|||
protected definition left_inverse (g : map b a) (f : map a b) : Prop := left_inv_on g f a
|
||||
|
||||
theorem left_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2)
|
||||
(H : left_inverse g1 f) : left_inverse g2 f :=
|
||||
(H : map.left_inverse g1 f) : map.left_inverse g2 f :=
|
||||
left_inv_on_of_eq_on_left (mapsto f) eqg H
|
||||
|
||||
theorem left_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2)
|
||||
(H : left_inverse g f1) : left_inverse g f2 :=
|
||||
(H : map.left_inverse g f1) : map.left_inverse g f2 :=
|
||||
left_inv_on_of_eq_on_right eqf H
|
||||
|
||||
theorem injective_of_left_inverse {g : map b a} {f : map a b} (H : left_inverse g f) :
|
||||
injective f :=
|
||||
theorem injective_of_left_inverse {g : map b a} {f : map a b} (H : map.left_inverse g f) :
|
||||
map.injective f :=
|
||||
inj_on_of_left_inv_on H
|
||||
|
||||
theorem left_inverse_compose {f' : map b a} {g' : map c b} {g : map b c} {f : map a b}
|
||||
(Hf : left_inverse f' f) (Hg : left_inverse g' g) : left_inverse (f' ∘ g') (g ∘ f) :=
|
||||
(Hf : map.left_inverse f' f) (Hg : map.left_inverse g' g) : map.left_inverse (f' ∘ g') (g ∘ f) :=
|
||||
left_inv_on_compose (mapsto f) Hf Hg
|
||||
|
||||
/- right inverse -/
|
||||
|
||||
-- g is a right inverse to f
|
||||
protected definition right_inverse (g : map b a) (f : map a b) : Prop := left_inverse f g
|
||||
protected definition right_inverse (g : map b a) (f : map a b) : Prop := map.left_inverse f g
|
||||
|
||||
theorem right_inverse_of_equiv_left {g1 g2 : map b a} {f : map a b} (eqg : g1 ~ g2)
|
||||
(H : right_inverse g1 f) : right_inverse g2 f :=
|
||||
left_inverse_of_equiv_right eqg H
|
||||
(H : map.right_inverse g1 f) : map.right_inverse g2 f :=
|
||||
map.left_inverse_of_equiv_right eqg H
|
||||
|
||||
theorem right_inverse_of_equiv_right {g : map b a} {f1 f2 : map a b} (eqf : f1 ~ f2)
|
||||
(H : right_inverse g f1) : right_inverse g f2 :=
|
||||
left_inverse_of_equiv_left eqf H
|
||||
(H : map.right_inverse g f1) : map.right_inverse g f2 :=
|
||||
map.left_inverse_of_equiv_left eqf H
|
||||
|
||||
theorem surjective_of_right_inverse {g : map b a} {f : map a b} (H : right_inverse g f) :
|
||||
surjective f :=
|
||||
theorem surjective_of_right_inverse {g : map b a} {f : map a b} (H : map.right_inverse g f) :
|
||||
map.surjective f :=
|
||||
surj_on_of_right_inv_on (mapsto g) H
|
||||
|
||||
theorem right_inverse_compose {f' : map b a} {g' : map c b} {g : map b c} {f : map a b}
|
||||
(Hf : right_inverse f' f) (Hg : right_inverse g' g) : right_inverse (f' ∘ g') (g ∘ f) :=
|
||||
left_inverse_compose Hg Hf
|
||||
(Hf : map.right_inverse f' f) (Hg : map.right_inverse g' g) : map.right_inverse (f' ∘ g') (g ∘ f) :=
|
||||
map.left_inverse_compose Hg Hf
|
||||
|
||||
theorem equiv_of_left_inverse_of_right_inverse {g1 g2 : map b a} {f : map a b}
|
||||
(H1 : left_inverse g1 f) (H2 : right_inverse g2 f) : g1 ~ g2 :=
|
||||
theorem equiv_of_map.left_inverse_of_right_inverse {g1 g2 : map b a} {f : map a b}
|
||||
(H1 : map.left_inverse g1 f) (H2 : map.right_inverse g2 f) : g1 ~ g2 :=
|
||||
eq_on_of_left_inv_of_right_inv (mapsto g2) H1 H2
|
||||
|
||||
/- inverse -/
|
||||
|
||||
-- g is an inverse to f
|
||||
protected definition is_inverse (g : map b a) (f : map a b) : Prop :=
|
||||
left_inverse g f ∧ right_inverse g f
|
||||
map.left_inverse g f ∧ map.right_inverse g f
|
||||
|
||||
theorem bijective_of_is_inverse {g : map b a} {f : map a b} (H : is_inverse g f) : bijective f :=
|
||||
theorem bijective_of_is_inverse {g : map b a} {f : map a b} (H : map.is_inverse g f) : map.bijective f :=
|
||||
and.intro
|
||||
(injective_of_left_inverse (and.left H))
|
||||
(surjective_of_right_inverse (and.right H))
|
||||
|
|
|
@ -17,11 +17,11 @@ namespace unit
|
|||
unit.equal a star
|
||||
|
||||
protected theorem subsingleton [instance] : subsingleton unit :=
|
||||
subsingleton.intro (λ a b, equal a b)
|
||||
subsingleton.intro (λ a b, unit.equal a b)
|
||||
|
||||
protected definition is_inhabited [instance] : inhabited unit :=
|
||||
inhabited.mk unit.star
|
||||
|
||||
protected definition has_decidable_eq [instance] : decidable_eq unit :=
|
||||
take (a b : unit), decidable.inl (equal a b)
|
||||
take (a b : unit), decidable.inl (unit.equal a b)
|
||||
end unit
|
||||
|
|
|
@ -28,8 +28,8 @@ namespace function
|
|||
protected theorem equiv.trans {f₁ f₂ f₃ : Πx: A, B x} : f₁ ~ f₂ → f₂ ~ f₃ → f₁ ~ f₃ :=
|
||||
λH₁ H₂ x, eq.trans (H₁ x) (H₂ x)
|
||||
|
||||
protected theorem equiv.is_equivalence (A : Type) (B : A → Type) : equivalence (@equiv A B) :=
|
||||
mk_equivalence (@equiv A B) (@equiv.refl A B) (@equiv.symm A B) (@equiv.trans A B)
|
||||
protected theorem equiv.is_equivalence (A : Type) (B : A → Type) : equivalence (@function.equiv A B) :=
|
||||
mk_equivalence (@function.equiv A B) (@equiv.refl A B) (@equiv.symm A B) (@equiv.trans A B)
|
||||
end function
|
||||
|
||||
section
|
||||
|
|
|
@ -49,19 +49,19 @@ namespace quot
|
|||
|
||||
protected lemma indep_coherent (f : Π a, B ⟦a⟧)
|
||||
(H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
||||
: ∀ a b, a ≈ b → indep f a = indep f b :=
|
||||
: ∀ a b, a ≈ b → quot.indep f a = quot.indep f b :=
|
||||
λa b e, sigma.equal (sound e) (H a b e)
|
||||
|
||||
protected lemma lift_indep_pr1
|
||||
(f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
||||
(q : quot s) : (lift (indep f) (indep_coherent f H) q).1 = q :=
|
||||
(q : quot s) : (lift (quot.indep f) (quot.indep_coherent f H) q).1 = q :=
|
||||
quot.ind (λ a, by esimp) q
|
||||
|
||||
protected definition rec [reducible]
|
||||
(f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
||||
(q : quot s) : B q :=
|
||||
let p := lift (indep f) (indep_coherent f H) q in
|
||||
eq.rec_on (lift_indep_pr1 f H q) (p.2)
|
||||
let p := lift (quot.indep f) (quot.indep_coherent f H) q in
|
||||
eq.rec_on (quot.lift_indep_pr1 f H q) (p.2)
|
||||
|
||||
protected definition rec_on [reducible]
|
||||
(q : quot s) (f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b) : B q :=
|
||||
|
@ -126,8 +126,8 @@ namespace quot
|
|||
protected definition hrec_on₂ [reducible]
|
||||
{C : quot s₁ → quot s₂ → Type₁} (q₁ : quot s₁) (q₂ : quot s₂)
|
||||
(f : Π a b, C ⟦a⟧ ⟦b⟧) (c : ∀ a₁ a₂ b₁ b₂, a₁ ≈ b₁ → a₂ ≈ b₂ → f a₁ a₂ == f b₁ b₂) : C q₁ q₂:=
|
||||
hrec_on q₁
|
||||
(λ a, hrec_on q₂ (λ b, f a b) (λ b₁ b₂ p, c _ _ _ _ !setoid.refl p))
|
||||
quot.hrec_on q₁
|
||||
(λ a, quot.hrec_on q₂ (λ b, f a b) (λ b₁ b₂ p, c _ _ _ _ !setoid.refl p))
|
||||
(λ a₁ a₂ p, quot.induction_on q₂
|
||||
(λ b,
|
||||
have aux : f a₁ b == f a₂ b, from c _ _ _ _ p !setoid.refl,
|
||||
|
|
|
@ -152,8 +152,12 @@ static environment declare_var(parser & p, environment env,
|
|||
env = module::add(env, check(env, mk_constant_assumption(full_n, ls, new_type)));
|
||||
p.add_decl_index(full_n, pos, get_variable_tk(), new_type);
|
||||
}
|
||||
if (!ns.is_anonymous())
|
||||
if (!ns.is_anonymous()) {
|
||||
if (is_protected)
|
||||
env = add_expr_alias(env, get_protected_shortest_name(full_n), full_n);
|
||||
else
|
||||
env = add_expr_alias(env, n, full_n);
|
||||
}
|
||||
if (is_protected)
|
||||
env = add_protected(env, full_n);
|
||||
return env;
|
||||
|
@ -1101,8 +1105,12 @@ class definition_cmd_fn {
|
|||
m_p.add_decl_index(real_n, m_pos, m_p.get_cmd_token(), type);
|
||||
if (m_is_protected)
|
||||
m_env = add_protected(m_env, real_n);
|
||||
if (n != real_n)
|
||||
if (n != real_n) {
|
||||
if (m_is_protected)
|
||||
m_env = add_expr_alias_rec(m_env, get_protected_shortest_name(real_n), real_n);
|
||||
else
|
||||
m_env = add_expr_alias_rec(m_env, n, real_n);
|
||||
}
|
||||
if (m_kind == Abbreviation || m_kind == LocalAbbreviation) {
|
||||
bool persistent = m_kind == Abbreviation;
|
||||
m_env = add_abbreviation(m_env, real_n, m_attributes.m_is_parsing_only, persistent);
|
||||
|
|
|
@ -53,6 +53,15 @@ bool is_protected(environment const & env, name const & n) {
|
|||
return get_extension(env).m_protected.contains(n);
|
||||
}
|
||||
|
||||
name get_protected_shortest_name(name const & n) {
|
||||
if (n.is_atomic() || n.get_prefix().is_atomic()) {
|
||||
return n;
|
||||
} else {
|
||||
name new_prefix = n.get_prefix().replace_prefix(n.get_prefix().get_prefix(), name());
|
||||
return n.replace_prefix(n.get_prefix(), new_prefix);
|
||||
}
|
||||
}
|
||||
|
||||
void initialize_protected() {
|
||||
g_ext = new protected_ext_reg();
|
||||
g_prt_key = new std::string("prt");
|
||||
|
|
|
@ -12,6 +12,8 @@ namespace lean {
|
|||
environment add_protected(environment const & env, name const & n);
|
||||
/** \brief Return true iff \c n was marked as protected in the environment \c n. */
|
||||
bool is_protected(environment const & env, name const & n);
|
||||
/** \brief Return the shortest name that can be used to reference the given name */
|
||||
name get_protected_shortest_name(name const & n);
|
||||
|
||||
void initialize_protected();
|
||||
void finalize_protected();
|
||||
|
|
|
@ -95,7 +95,7 @@ namespace pi
|
|||
definition transport_V [reducible] (P : A → Type) {x y : A} (p : x = y) (u : P y) : P x :=
|
||||
p⁻¹ ▸ u
|
||||
|
||||
protected definition functor_pi : (Π(a:A), B a) → (Π(a':A'), B' a') := (λg a', f1 a' (g (f0 a')))
|
||||
definition functor_pi : (Π(a:A), B a) → (Π(a':A'), B' a') := (λg a', f1 a' (g (f0 a')))
|
||||
/- Equivalences -/
|
||||
definition isequiv_functor_pi [instance] (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a')
|
||||
[H0 : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')]
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
namespace foo
|
||||
protected axiom A : Prop
|
||||
axiom B : Prop
|
||||
protected constant a : A
|
||||
protected constant a : foo.A
|
||||
constant b : B
|
||||
protected axioms (A₁ A₂ : Prop)
|
||||
protected constants (a₁ a₂ : A)
|
||||
protected constants (a₁ a₂ : foo.A)
|
||||
axioms (B₁ B₂ : Prop)
|
||||
constants (b₁ b₂ : B)
|
||||
end foo
|
||||
|
|
Loading…
Reference in a new issue