fix(frontends/lean/parser): bug in parse_tactic

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-05 17:40:55 -08:00
parent a564795fe6
commit e1d44eec6b
3 changed files with 20 additions and 2 deletions

View file

@ -1413,8 +1413,6 @@ class parser::imp {
std::sort(mvars.begin(), mvars.end(), [](expr const & e1, expr const & e2) { return is_lt(e1, e2, false); }); std::sort(mvars.begin(), mvars.end(), [](expr const & e1, expr const & e2) { return is_lt(e1, e2, false); });
for (auto mvar : mvars) { for (auto mvar : mvars) {
expr mvar_type = instantiate_metavars(menv.get_type(mvar), menv); expr mvar_type = instantiate_metavars(menv.get_type(mvar), menv);
if (!m_type_inferer.is_proposition(mvar_type))
throw exception("failed to synthesize metavar, its type is not a proposition");
if (has_metavar(mvar_type)) if (has_metavar(mvar_type))
throw exception("failed to synthesize metavar, its type contains metavariables"); throw exception("failed to synthesize metavar, its type contains metavariables");
buffer<context_entry> new_entries; buffer<context_entry> new_entries;
@ -1424,6 +1422,8 @@ class parser::imp {
instantiate_metavars(e.get_body(), menv)); instantiate_metavars(e.get_body(), menv));
} }
context mvar_ctx(to_list(new_entries.begin(), new_entries.end())); context mvar_ctx(to_list(new_entries.begin(), new_entries.end()));
if (!m_type_inferer.is_proposition(mvar_type, mvar_ctx))
throw exception("failed to synthesize metavar, its type is not a proposition");
proof_state s = to_proof_state(m_frontend, mvar_ctx, mvar_type); proof_state s = to_proof_state(m_frontend, mvar_ctx, mvar_type);
if (curr_is_period()) { if (curr_is_period()) {
display_proof_state_if_interactive(s); display_proof_state_if_interactive(s);

View file

@ -0,0 +1,7 @@
Axiom magic (a : Bool) : a.
Theorem T (a : Bool) : a.
apply (** apply_tactic("magic") **).
done.
Show Environment 1.

View file

@ -0,0 +1,11 @@
Type Ctrl-D or 'Exit.' to exit or 'Help.' for help.
# Set: pp::colors
Set: pp::unicode
Assumed: magic
# Proof state:
a : Bool ⊢ a
## Proof state:
no goals
## Proved: T
# Theorem T (a : Bool) : a := magic a
#