Modify verbose message for Set command
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
0a67679afb
commit
e218b92a9d
24 changed files with 42 additions and 42 deletions
|
@ -1312,7 +1312,7 @@ class parser::imp {
|
||||||
}
|
}
|
||||||
updt_options();
|
updt_options();
|
||||||
if (m_verbose)
|
if (m_verbose)
|
||||||
regular(m_frontend) << " Set option: " << id << endl;
|
regular(m_frontend) << " Set: " << id << endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
void parse_import() {
|
void parse_import() {
|
||||||
|
|
|
@ -9,9 +9,9 @@ Int
|
||||||
Assumed: m
|
Assumed: m
|
||||||
n + m
|
n + m
|
||||||
n + x + m
|
n + x + m
|
||||||
Set option: lean::pp::coercion
|
Set: lean::pp::coercion
|
||||||
(nat_to_int n) + x + (nat_to_int m) + (nat_to_int 10)
|
(nat_to_int n) + x + (nat_to_int m) + (nat_to_int 10)
|
||||||
x + (nat_to_int n) + (nat_to_int m) + (nat_to_int 10)
|
x + (nat_to_int n) + (nat_to_int m) + (nat_to_int 10)
|
||||||
(nat_to_int (n + m + 10)) + x
|
(nat_to_int (n + m + 10)) + x
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
Int::add (nat_to_int (Nat::add (Nat::add n m) 10)) x
|
Int::add (nat_to_int (Nat::add (Nat::add n m) 10)) x
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: T
|
Assumed: T
|
||||||
Assumed: R
|
Assumed: R
|
||||||
Assumed: f
|
Assumed: f
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: T
|
Assumed: T
|
||||||
Assumed: R
|
Assumed: R
|
||||||
Assumed: t2r
|
Assumed: t2r
|
||||||
|
@ -9,23 +9,23 @@ g a a
|
||||||
Assumed: b
|
Assumed: b
|
||||||
g a b
|
g a b
|
||||||
g b a
|
g b a
|
||||||
Set option: lean::pp::coercion
|
Set: lean::pp::coercion
|
||||||
g (t2r a) (t2r a)
|
g (t2r a) (t2r a)
|
||||||
g (t2r a) b
|
g (t2r a) b
|
||||||
g b (t2r a)
|
g b (t2r a)
|
||||||
Set option: lean::pp::coercion
|
Set: lean::pp::coercion
|
||||||
Assumed: S
|
Assumed: S
|
||||||
Assumed: s
|
Assumed: s
|
||||||
Assumed: r
|
Assumed: r
|
||||||
Assumed: h
|
Assumed: h
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
g (g a b) a
|
g (g a b) a
|
||||||
h (h r s) r
|
h (h r s) r
|
||||||
R
|
R
|
||||||
S
|
S
|
||||||
Set option: lean::pp::coercion
|
Set: lean::pp::coercion
|
||||||
g (g (t2r a) b) (t2r a)
|
g (g (t2r a) b) (t2r a)
|
||||||
h (h r s) r
|
h (h r s) r
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
(t2r a) ++ b ++ (t2r a)
|
(t2r a) ++ b ++ (t2r a)
|
||||||
r ++ s ++ r
|
r ++ s ++ r
|
||||||
|
|
File diff suppressed because one or more lines are too long
|
@ -1,6 +1,6 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
⊤
|
⊤
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
and true false
|
and true false
|
||||||
Assumed: a
|
Assumed: a
|
||||||
Error (line: 8, pos: 0) invalid object declaration, environment already has an object named 'a'
|
Error (line: 8, pos: 0) invalid object declaration, environment already has an object named 'a'
|
||||||
|
@ -17,5 +17,5 @@ Variable A : Type
|
||||||
⟨lean::pp::notation ↦ false, pp::colors ↦ false⟩
|
⟨lean::pp::notation ↦ false, pp::colors ↦ false⟩
|
||||||
Error (line: 15, pos: 4) unknown option 'lean::p::notation', type 'Help Options.' for list of available options
|
Error (line: 15, pos: 4) unknown option 'lean::p::notation', type 'Help Options.' for list of available options
|
||||||
Error (line: 16, pos: 23) invalid option value, given option is not an integer
|
Error (line: 16, pos: 23) invalid option value, given option is not an integer
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
a ∧ b
|
a ∧ b
|
||||||
|
|
|
@ -9,7 +9,7 @@ expected type
|
||||||
given type
|
given type
|
||||||
T
|
T
|
||||||
Assumed: myeq2
|
Assumed: myeq2
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Error (line: 9, pos: 15) type mismatch at application argument 3 of
|
Error (line: 9, pos: 15) type mismatch at application argument 3 of
|
||||||
myeq2::explicit Bool ⊤ a
|
myeq2::explicit Bool ⊤ a
|
||||||
expected type
|
expected type
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
Assumed: f
|
Assumed: f
|
||||||
Assumed: g
|
Assumed: g
|
||||||
⊤ ++ ⊥ ++ ⊤
|
⊤ ++ ⊥ ++ ⊤
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
f (f true false) true
|
f (f true false) true
|
||||||
Assumed: a
|
Assumed: a
|
||||||
Assumed: b
|
Assumed: b
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: N
|
Assumed: N
|
||||||
Assumed: lt
|
Assumed: lt
|
||||||
Assumed: zero
|
Assumed: zero
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: a
|
Assumed: a
|
||||||
Assumed: b
|
Assumed: b
|
||||||
a ∧ b
|
a ∧ b
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Defined: xor
|
Defined: xor
|
||||||
⊤ ⊕ ⊥
|
⊤ ⊕ ⊥
|
||||||
⊥
|
⊥
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
λ x y : Bool, x ∧ y
|
λ x y : Bool, x ∧ y
|
||||||
let x := ⊤,
|
let x := ⊤,
|
||||||
y := ⊤,
|
y := ⊤,
|
||||||
|
|
|
@ -1,3 +1,3 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
λ x x : Bool, x
|
λ x x : Bool, x
|
||||||
let x := ⊤, y := ⊤, z := x ∧ y, f := λ x y : Bool, x ∧ y ⇔ y ∧ x ⇔ x ∨ y ∨ y in (f x y) ∨ z
|
let x := ⊤, y := ⊤, z := x ∧ y, f := λ x y : Bool, x ∧ y ⇔ y ∧ x ⇔ x ∨ y ∨ y in (f x y) ∨ z
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Int → Int → Int
|
Int → Int → Int
|
||||||
Assumed: f
|
Assumed: f
|
||||||
f 0
|
f 0
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: x
|
Assumed: x
|
||||||
Type U+3 ⊔ M+2 ⊔ 3
|
Type U+3 ⊔ M+2 ⊔ 3
|
||||||
Assumed: f
|
Assumed: f
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: f
|
Assumed: f
|
||||||
∀ a b : Type, (f a) = (f b)
|
∀ a b : Type, (f a) = (f b)
|
||||||
Assumed: g
|
Assumed: g
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: f
|
Assumed: f
|
||||||
Assumed: g
|
Assumed: g
|
||||||
∀ a b : Type, ∃ c : Type, (g a b) = (f c)
|
∀ a b : Type, ∃ c : Type, (g a b) = (f c)
|
||||||
|
|
|
@ -2,11 +2,11 @@
|
||||||
Assumed: a
|
Assumed: a
|
||||||
Assumed: b
|
Assumed: b
|
||||||
a ∧ b
|
a ∧ b
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
⟨lean::pp::notation ↦ false⟩
|
⟨lean::pp::notation ↦ false⟩
|
||||||
and a b
|
and a b
|
||||||
[34mVariable[0m a : Bool
|
[34mVariable[0m a : Bool
|
||||||
[34mVariable[0m b : Bool
|
[34mVariable[0m b : Bool
|
||||||
Set option: lean::pp::notation
|
Set: lean::pp::notation
|
||||||
⟨lean::pp::notation ↦ true⟩
|
⟨lean::pp::notation ↦ true⟩
|
||||||
a ∧ b
|
a ∧ b
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Notation 10 if _ then _ : implies
|
Notation 10 if _ then _ : implies
|
||||||
if ⊤ then ⊥
|
if ⊤ then ⊥
|
||||||
if ⊤ then (if a then ⊥)
|
if ⊤ then (if a then ⊥)
|
||||||
|
|
|
@ -2,11 +2,11 @@
|
||||||
Assumed: N
|
Assumed: N
|
||||||
Assumed: n1
|
Assumed: n1
|
||||||
Assumed: n2
|
Assumed: n2
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
f::explicit N n1 n2
|
f::explicit N n1 n2
|
||||||
f::explicit ((N [33m→[0m N) [33m→[0m N [33m→[0m N) ([33mλ[0m x : N [33m→[0m N, x) ([33mλ[0m y : N [33m→[0m N, y)
|
f::explicit ((N [33m→[0m N) [33m→[0m N [33m→[0m N) ([33mλ[0m x : N [33m→[0m N, x) ([33mλ[0m y : N [33m→[0m N, y)
|
||||||
Assumed: EqNice
|
Assumed: EqNice
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
EqNice::explicit N n1 n2
|
EqNice::explicit N n1 n2
|
||||||
N
|
N
|
||||||
Π (A : Type U) (B : A → Type U) (f g : Π x : A, B x) (a b : A) (H1 : f = g) (H2 : a = b), (f a) = (g b)
|
Π (A : Type U) (B : A → Type U) (f g : Π x : A, B x) (a b : A) (H1 : f = g) (H2 : a = b), (f a) = (g b)
|
||||||
|
|
|
@ -1,10 +1,10 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: N
|
Assumed: N
|
||||||
Assumed: a
|
Assumed: a
|
||||||
Assumed: b
|
Assumed: b
|
||||||
a ≃ b
|
a ≃ b
|
||||||
Bool
|
Bool
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
heq::explicit N a b
|
heq::explicit N a b
|
||||||
heq::explicit Type 2 Type 1 Type 1
|
heq::explicit Type 2 Type 1 Type 1
|
||||||
heq::explicit Bool ⊤ ⊥
|
heq::explicit Bool ⊤ ⊥
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: N
|
Assumed: N
|
||||||
Assumed: h
|
Assumed: h
|
||||||
Proved: CongrH
|
Proved: CongrH
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
||||||
Congr::explicit
|
Congr::explicit
|
||||||
N
|
N
|
||||||
|
@ -15,11 +15,11 @@ Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h
|
||||||
H2
|
H2
|
||||||
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
||||||
CongrH::explicit a1 a2 b1 b2 H1 H2
|
CongrH::explicit a1 a2 b1 b2 H1 H2
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := Congr (Congr (Refl h) H1) H2
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := Congr (Congr (Refl h) H1) H2
|
||||||
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := CongrH H1 H2
|
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := CongrH H1 H2
|
||||||
Proved: Example1
|
Proved: Example1
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Theorem Example1 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
Theorem Example1 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
||||||
DisjCases::explicit
|
DisjCases::explicit
|
||||||
(a = b ∧ b = c)
|
(a = b ∧ b = c)
|
||||||
|
@ -55,7 +55,7 @@ Theorem Example1 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a
|
||||||
(Conjunct2::explicit (a = d) (d = c) H1))
|
(Conjunct2::explicit (a = d) (d = c) H1))
|
||||||
(Refl::explicit N b))
|
(Refl::explicit N b))
|
||||||
Proved: Example2
|
Proved: Example2
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Theorem Example2 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
Theorem Example2 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
||||||
DisjCases::explicit
|
DisjCases::explicit
|
||||||
(a = b ∧ b = c)
|
(a = b ∧ b = c)
|
||||||
|
@ -91,14 +91,14 @@ Theorem Example2 (a b c d : N) (H : a = b ∧ b = c ∨ a = d ∧ d = c) : (h a
|
||||||
(Conjunct2::explicit (a = d) (d = c) H1))
|
(Conjunct2::explicit (a = d) (d = c) H1))
|
||||||
(Refl::explicit N b))
|
(Refl::explicit N b))
|
||||||
Proved: Example3
|
Proved: Example3
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Theorem Example3 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
Theorem Example3 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) :=
|
||||||
DisjCases
|
DisjCases
|
||||||
H
|
H
|
||||||
(λ H1 : a = b ∧ b = e ∧ b = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b))
|
(λ H1 : a = b ∧ b = e ∧ b = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b))
|
||||||
(λ H1 : a = d ∧ d = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
(λ H1 : a = d ∧ d = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
||||||
Proved: Example4
|
Proved: Example4
|
||||||
Set option: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a c) = (h c a) :=
|
Theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a c) = (h c a) :=
|
||||||
DisjCases
|
DisjCases
|
||||||
H
|
H
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Assumed: f
|
Assumed: f
|
||||||
λ (A B : Type) (a : B), f B a
|
λ (A B : Type) (a : B), f B a
|
||||||
Error (line: 5, pos: 40) application type mismatch during term elaboration at term
|
Error (line: 5, pos: 40) application type mismatch during term elaboration at term
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
Set option: pp::colors
|
Set: pp::colors
|
||||||
Π (A : Type) (a : A), A
|
Π (A : Type) (a : A), A
|
||||||
Assumed: g
|
Assumed: g
|
||||||
Defined: f
|
Defined: f
|
||||||
|
|
Loading…
Reference in a new issue