test(tests/lean): add heterogeneous equality simplification example

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-02-02 20:27:39 -08:00
parent cbe89ca32e
commit e2add5c9f2
2 changed files with 50 additions and 0 deletions

34
tests/lean/hsimp.lean Normal file
View file

@ -0,0 +1,34 @@
import heq
import tactic
add_rewrite Nat::add_assoc Nat::add_zeror
variable vec : Nat → Type
variable concat {n m : Nat} (v : vec n) (w : vec m) : vec (n + m)
infixl 65 ; : concat
axiom concat_assoc {n1 n2 n3 : Nat} (v1 : vec n1) (v2 : vec n2) (v3 : vec n3) :
(v1 ; v2) ; v3 = cast (by simp) (v1 ; (v2 ; v3))
variable empty : vec 0
axiom concat_empty {n : Nat} (v : vec n) :
v ; empty = cast (by simp) v
add_rewrite concat_assoc concat_empty
(*
local t = parse_lean('∀ (n : Nat) (v : vec (n + 0)) (w : vec n), v = w ; empty')
print(t)
local t2, pr = simplify(t)
print("====>")
print(t2)
get_environment():type_check(pr)
*)
print ""
(*
local t = parse_lean('λ n : Nat, ∃ (v : vec (n + 0)) (w : vec n), v ≠ w ; empty')
print(t)
local t2, pr = simplify(t)
print("====>")
print(t2)
get_environment():type_check(pr)
*)

View file

@ -0,0 +1,16 @@
Set: pp::colors
Set: pp::unicode
Imported 'heq'
Imported 'tactic'
Assumed: vec
Assumed: concat
Assumed: concat_assoc
Assumed: empty
Assumed: concat_empty
∀ (n : ) (v : vec (n + 0)) (w : vec n), v = w ; empty
====>
∀ (n : ) (v w : vec n), v = w
λ n : , ∃ (v : vec (n + 0)) (w : vec n), v ≠ w ; empty
====>
λ n : , ∃ v w : vec n, ¬ v = w