feat(library/data/nat/fact): define factorial
This commit is contained in:
parent
b9114260f8
commit
e33946ff02
1 changed files with 63 additions and 0 deletions
63
library/data/nat/fact.lean
Normal file
63
library/data/nat/fact.lean
Normal file
|
@ -0,0 +1,63 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Leonardo de Moura
|
||||
|
||||
Factorial
|
||||
-/
|
||||
import data.nat.div
|
||||
|
||||
namespace nat
|
||||
definition fact : nat → nat
|
||||
| 0 := 1
|
||||
| (succ n) := (succ n) * fact n
|
||||
|
||||
lemma fact_zero : fact 0 = 1 :=
|
||||
rfl
|
||||
|
||||
lemma fact_one : fact 1 = 1 :=
|
||||
rfl
|
||||
|
||||
lemma fact_succ (n) : fact (succ n) = succ n * fact n :=
|
||||
rfl
|
||||
|
||||
lemma fact_ne_zero : ∀ n, fact n ≠ 0
|
||||
| 0 := by contradiction
|
||||
| (succ n) :=
|
||||
begin
|
||||
intro h,
|
||||
rewrite [fact_succ at h],
|
||||
cases (eq_zero_or_eq_zero_of_mul_eq_zero h) with h₁ h₂,
|
||||
contradiction,
|
||||
exact fact_ne_zero n h₂
|
||||
end
|
||||
|
||||
lemma fact_gt_0 (n) : fact n > 0 :=
|
||||
pos_of_ne_zero (fact_ne_zero n)
|
||||
|
||||
lemma dvd_fact : ∀ {m n}, m > 0 → m ≤ n → m ∣ fact n
|
||||
| m 0 h₁ h₂ := absurd h₁ (not_lt_of_ge h₂)
|
||||
| m (succ n) h₁ h₂ :=
|
||||
begin
|
||||
rewrite fact_succ,
|
||||
cases (eq_or_lt_of_le h₂) with he hl,
|
||||
{subst m, apply dvd_mul_right},
|
||||
{have aux : m ∣ fact n, from dvd_fact h₁ (le_of_lt_succ hl),
|
||||
apply dvd_mul_of_dvd_right aux}
|
||||
end
|
||||
|
||||
lemma fact_le {m n} : m ≤ n → fact m ≤ fact n :=
|
||||
begin
|
||||
induction n with n ih,
|
||||
{intro h,
|
||||
have meq0 : m = 0, from eq_zero_of_le_zero h,
|
||||
subst m},
|
||||
{intro m_le_succ_n,
|
||||
cases (eq_or_lt_of_le m_le_succ_n) with h₁ h₂,
|
||||
{subst m},
|
||||
{transitivity (fact n),
|
||||
exact ih (le_of_lt_succ h₂),
|
||||
rewrite [fact_succ, -one_mul at {1}],
|
||||
exact mul_le_mul (succ_le_succ (zero_le n)) !le.refl}}
|
||||
end
|
||||
end nat
|
Loading…
Reference in a new issue