refactor(library/converter): expose is_opaque predicate in the converter interface

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-05 12:05:23 -07:00
parent 8aa217ea76
commit e366aadad0
2 changed files with 32 additions and 26 deletions

View file

@ -13,6 +13,35 @@ Author: Leonardo de Moura
#include "kernel/type_checker.h" #include "kernel/type_checker.h"
namespace lean { namespace lean {
/**
\brief Predicate for deciding whether \c d is an opaque definition or not.
Here is the basic idea:
1) Each definition has an opaque flag. This flag cannot be modified after a definition is added to the environment.
The opaque flag affects the convertability check. The idea is to minimize the number of delta-reduction steps.
We also believe it increases the modularity of Lean developments by minimizing the dependency on how things are defined.
We should view non-opaque definitions as "inline definitions" used in programming languages such as C++.
2) Whenever type checking an expression, the user can provide an additional set of definition names (m_extra_opaque) that
should be considered opaque. Note that, if \c t type checks when using an extra_opaque set S, then t also type checks
(modulo resource constraints) with the empty set. Again, the purpose of extra_opaque is to mimimize the number
of delta-reduction steps.
3) To be able to prove theorems about an opaque definition, we treat an opaque definition D in a module M as
transparent when we are type checking another definition/theorem D' also in M. This rule only applies if
D is not a theorem, nor D is in the set m_extra_opaque. To implement this feature, this class has a field
m_module_idx that is not none when this rule should be applied.
*/
bool is_opaque(declaration const & d, name_set const & extra_opaque, optional<module_idx> const & mod_idx) {
lean_assert(d.is_definition());
if (d.is_theorem()) return true; // theorems are always opaque
if (extra_opaque.contains(d.get_name())) return true; // extra_opaque set overrides opaque flag
if (!d.is_opaque()) return false; // d is a transparent definition
if (mod_idx && d.get_module_idx() == *mod_idx) return false; // the opaque definitions in mod_idx are considered transparent
return true; // d is opaque
}
static no_delayed_justification g_no_delayed_jst; static no_delayed_justification g_no_delayed_jst;
bool converter::is_def_eq(expr const & t, expr const & s, type_checker & c) { bool converter::is_def_eq(expr const & t, expr const & s, type_checker & c) {
return is_def_eq(t, s, c, g_no_delayed_jst); return is_def_eq(t, s, c, g_no_delayed_jst);
@ -138,33 +167,8 @@ struct default_converter : public converter {
return r; return r;
} }
/**
\brief Predicate for deciding whether \c d is an opaque definition or not.
Here is the basic idea:
1) Each definition has an opaque flag. This flag cannot be modified after a definition is added to the environment.
The opaque flag affects the convertability check. The idea is to minimize the number of delta-reduction steps.
We also believe it increases the modularity of Lean developments by minimizing the dependency on how things are defined.
We should view non-opaque definitions as "inline definitions" used in programming languages such as C++.
2) Whenever type checking an expression, the user can provide an additional set of definition names (m_extra_opaque) that
should be considered opaque. Note that, if \c t type checks when using an extra_opaque set S, then t also type checks
(modulo resource constraints) with the empty set. Again, the purpose of extra_opaque is to mimimize the number
of delta-reduction steps.
3) To be able to prove theorems about an opaque definition, we treat an opaque definition D in a module M as
transparent when we are type checking another definition/theorem D' also in M. This rule only applies if
D is not a theorem, nor D is in the set m_extra_opaque. To implement this feature, this class has a field
m_module_idx that is not none when this rule should be applied.
*/
bool is_opaque(declaration const & d) const { bool is_opaque(declaration const & d) const {
lean_assert(d.is_definition()); return ::lean::is_opaque(d, m_extra_opaque, m_module_idx);
if (d.is_theorem()) return true; // theorems are always opaque
if (m_extra_opaque.contains(d.get_name())) return true; // extra_opaque set overrides opaque flag
if (!d.is_opaque()) return false; // d is a transparent definition
if (m_module_idx && d.get_module_idx() == *m_module_idx) return false; // the opaque definitions in module_idx are considered transparent
return true; // d is opaque
} }
/** \brief Expand \c e if it is non-opaque constant with weight >= w */ /** \brief Expand \c e if it is non-opaque constant with weight >= w */

View file

@ -30,4 +30,6 @@ std::unique_ptr<converter> mk_default_converter(environment const & env,
name_set const & extra_opaque = name_set()); name_set const & extra_opaque = name_set());
std::unique_ptr<converter> mk_default_converter(environment const & env, bool unfold_opaque_main, std::unique_ptr<converter> mk_default_converter(environment const & env, bool unfold_opaque_main,
bool memoize = true, name_set const & extra_opaque = name_set()); bool memoize = true, name_set const & extra_opaque = name_set());
bool is_opaque(declaration const & d, name_set const & extra_opaque, optional<module_idx> const & mod_idx);
} }